Nothing Special   »   [go: up one dir, main page]

Kopetz et al., 1993 - Google Patents

TTP-A time-triggered protocol for fault-tolerant real-time systems

Kopetz et al., 1993

View PDF
Document ID
12228038399647797710
Author
Kopetz H
Grunsteidl G
Publication year
Publication venue
FTCS-23 The twenty-third international symposium on fault-tolerant computing

External Links

Snippet

The Time-Triggered Protocol (TTP), which is intended for use in distributed real-time control applications that require a high dependability and guaranteed timeliness, is discussed. It integrates all services that are required in the design of a fault-tolerant real-time system …
Continue reading at scholar.archive.org (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
    • H04L12/42Loop networks
    • H04L12/427Loop networks with decentralised control
    • H04L12/43Loop networks with decentralised control with synchronous transmission, e.g. time division multiplex [TDM], slotted rings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/202Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements where processing functionality is redundant
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/2097Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements maintaining the standby controller/processing unit updated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. local area networks [LAN], wide area networks [WAN]
    • H04L12/40Bus networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Application independent communication protocol aspects or techniques in packet data networks
    • H04L69/40Techniques for recovering from a failure of a protocol instance or entity, e.g. failover routines, service redundancy protocols, protocol state redundancy or protocol service redirection in case of a failure or disaster recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • G06F11/0754Error or fault detection not based on redundancy by exceeding limits
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Error detection; Error correction; Monitoring responding to the occurence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/46Multiprogramming arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing

Similar Documents

Publication Publication Date Title
Kopetz et al. TTP-A time-triggered protocol for fault-tolerant real-time systems
Kopetz et al. TTP/spl minus/a protocol for fault-tolerant real-time systems
US4937741A (en) Synchronization of fault-tolerant parallel processing systems
Fischer The consensus problem in unreliable distributed systems (a brief survey)
Kopetz et al. Fault-tolerant membership service in a synchronous distributed real-time system
US5694542A (en) Time-triggered communication control unit and communication method
US5551047A (en) Method for distributed redundant execution of program modules
US4716408A (en) Data transmission system of the star type with enablement passing
Abdelzaher et al. RTCAST: Lightweight multicast for real-time process groups
Lonn et al. Formal verification of a TDMA protocol start-up mechanism
Sayeed et al. Optimal asynchronous agreement and leader election algorithm for complete networks with byzantine faulty links
Ofek Generating a fault-tolerant global clock using high-speed control signals for the MetaNet architecture
Rufino et al. A Columbus' egg idea for CAN media redundancy
Álvarez et al. Fault tolerance in highly reliable ethernet-based industrial systems
Kopetz A solution to an automotive control system benchmark
Gessner et al. A fault-tolerant ethernet for hard real-time adaptive systems
Le Lann et al. How to implement a timer-free perfect failure detector in partially synchronous systems
Gessner et al. Towards a flexible time-triggered replicated star for Ethernet
Obermaisser CAN emulation in a time-triggered environment
Widder et al. Failure detection with booting in partially synchronous systems
Grünsteidl et al. A reliable multicast protocol for distributed real-time systems
Kopetz Fault management in the time triggered protocol (TTP)
Rosset et al. A group membership protocol for communication systems with both static and dynamic scheduling
Almeida et al. An adaptive real-time group communication protocol
Derasevic et al. Appropriate consistent replicated voting for increased reliability in a node replication scheme over FTT