Quintero-Rincón et al., 2016 - Google Patents
Multivariate Bayesian classification of epilepsy EEG signalsQuintero-Rincón et al., 2016
View PDF- Document ID
- 12210171555667465839
- Author
- Quintero-Rincón A
- Prendes J
- Pereyra M
- Batatia H
- Risk M
- Publication year
- Publication venue
- 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP)
External Links
Snippet
The classification of epileptic seizure events in EEG signals is an important problem in biomedical engineering. In this paper we propose a Bayesian classification method for multivariate EEG signals. The method is based on a multilevel 2D wavelet decomposition …
- 206010015037 Epilepsy 0 title abstract description 14
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/726—Details of waveform analysis characterised by using transforms using Wavelet transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
- A61B5/4094—Diagnosing or monitoring seizure diseases, e.g. epilepsy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0476—Electroencephalography
- A61B5/048—Detecting the frequency distribution of signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0402—Electrocardiography, i.e. ECG
- A61B5/0452—Detecting specific parameters of the electrocardiograph cycle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0476—Electroencephalography
- A61B5/0484—Electroencephalography using evoked response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7232—Signal processing specially adapted for physiological signals or for diagnostic purposes involving compression of the physiological signal, e.g. to extend the signal recording period
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/04001—Detecting, measuring or recording bioelectric signals of the body of parts thereof adapted to neuroelectric signals, e.g. nerve impulses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/04012—Analysis of electro-cardiograms, electro-encephalograms, electro-myograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/04—Detecting, measuring or recording bioelectric signals of the body of parts thereof
- A61B5/0488—Electromyography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02411—Detecting, measuring or recording pulse rate or heart rate of foetuses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Seizure onset detection using empirical mode decomposition and common spatial pattern | |
Quintero-Rincón et al. | Multivariate Bayesian classification of epilepsy EEG signals | |
Panda et al. | Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction | |
Hamad et al. | Feature extraction of epilepsy EEG using discrete wavelet transform | |
Shoka et al. | Literature review on EEG preprocessing, feature extraction, and classifications techniques | |
Fathima et al. | Wavelet based features for epileptic seizure detection | |
CN112741638B (en) | Medical diagnosis auxiliary system based on EEG signal | |
Ahmad et al. | Mallat’s scattering transform based anomaly sensing for detection of seizures in scalp EEG | |
Alotaibi et al. | Ensemble Machine Learning Based Identification of Pediatric Epilepsy. | |
Mirzaei et al. | EEG analysis based on wavelet-spectral entropy for epileptic seizures detection | |
Tzimourta et al. | Wavelet based classification of epileptic seizures in EEG signals | |
Chakraborty et al. | Automated detection of epileptic seizures using multiscale and refined composite multiscale dispersion entropy | |
WO2013063053A1 (en) | Method of building classifiers for real-time classification of neurological states | |
Islam et al. | Epileptic seizure focus detection from interictal electroencephalogram: a survey | |
Najumnissa et al. | Detection and classification of epileptic seizures using wavelet feature extraction and adaptive neuro-fuzzy inference system | |
Khan et al. | Wavelet-based multi-class discrimination of EEG for seizure detection | |
Tripathi et al. | Automatic seizure detection and classification using super-resolution superlet transform and deep neural network-A preprocessing-less method | |
Jaffino et al. | Expectation-maximization extreme machine learning classifier for epileptic seizure detection | |
Fathima et al. | Wavelet based features for classification of normal, ictal and interictal EEG signals | |
Kulkarni | Support vector machine based alzheimer’s disease diagnosis using synchrony features | |
Prabhakar et al. | An efficient classification of epilepsy risk levels from EEG signals using hard thresholding computation applied to code converters | |
Quintero-Rincón et al. | A visual EEG epilepsy detection method based on a wavelet statistical representation and the Kullback-Leibler divergence | |
Agrawal et al. | Early detection of epileptic seizures based on scalp EEG signals | |
Asha et al. | Automated seizure detection from multichannel EEG signals using support vector machine and artificial neural networks | |
Alyas et al. | A Comparative Analysis of Classifier Performance for Epileptic Seizure Detection Using EEG Signals. |