Wang et al., 2014 - Google Patents
Design and implementation of a rail-to-rail 460-kS/s 10-bit SAR ADC for the power-efficient capacitance measurementWang et al., 2014
- Document ID
- 12253840465036205212
- Author
- Wang S
- Dehollain C
- Publication year
- Publication venue
- IEEE Transactions on Instrumentation and Measurement
External Links
Snippet
This paper presents the design and implementation of a rail-to-rail 460-kS/s 10-bit successive approximation register analog-to-digital converter (ADC) for the power-efficient capacitance measurement. The specifications of ADC are optimized at system level …
- 238000005259 measurement 0 title abstract description 15
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
- H03M1/0678—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
- H03M1/068—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS
- H03M1/0682—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components the original and additional components or elements being complementary to each other, e.g. CMOS using a differential network structure, i.e. symmetrical with respect to ground
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/80—Simultaneous conversion using weighted impedances
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/40—Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type
- H03M1/403—Analogue value compared with reference values sequentially only, e.g. successive approximation type recirculation type using switched capacitors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
- H03M1/145—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/412—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
- H03M3/422—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/36—Analogue value compared with reference values simultaneously only, i.e. parallel type
- H03M1/361—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/436—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
- H03M3/438—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path
- H03M3/454—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type the modulator having a higher order loop filter in the feedforward path with distributed feedback, i.e. with feedback paths from the quantiser output to more than one filter stage
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0602—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/124—Sampling or signal conditioning arrangements specially adapted for A/D converters
- H03M1/1245—Details of sampling arrangements or methods
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/004—Reconfigurable analogue/digital or digital/analogue converters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45138—Two or more differential amplifiers in IC-block form are combined, e.g. measuring amplifiers
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11781885B2 (en) | Inverter-based successive approximation capacitance-to-digital converter | |
van der Goes et al. | A 1.5 mW 68 dB SNDR 80 Ms/s 2$\times $ Interleaved Pipelined SAR ADC in 28 nm CMOS | |
Hong et al. | A 65-fJ/conversion-step 0.9-V 200-kS/s rail-to-rail 8-bit successive approximation ADC | |
Ding et al. | A 46$\mu\text {W} $13 b 6.4 MS/s SAR ADC With Background Mismatch and Offset Calibration | |
Naraghi et al. | A 9-bit, 14 μW and 0.06 mm $^{2} $ Pulse Position Modulation ADC in 90 nm Digital CMOS | |
Lee et al. | A 21 fJ/conversion-step 100 kS/s 10-bit ADC with a low-noise time-domain comparator for low-power sensor interface | |
Omran et al. | A 33fJ/Step SAR capacitance-to-digital converter using a chain of inverter-based amplifiers | |
Fateh et al. | A reconfigurable 5-to-14 bit SAR ADC for battery-powered medical instrumentation | |
US11265008B2 (en) | Successive approximation register (SAR) analog to digital converter (ADC) | |
Lagos et al. | A 10.1-ENOB, 6.2-fJ/conv.-step, 500-MS/s, ringamp-based pipelined-SAR ADC With background calibration and dynamic reference regulation in 16-nm CMOS | |
Zhang et al. | A 0.8–1.2 V 10–50 MS/s 13-bit subranging pipelined-SAR ADC using a temperature-insensitive time-based amplifier | |
Xin et al. | A 0.1-nW–1-$\mu $ W Energy-Efficient All-Dynamic Versatile Capacitance-to-Digital Converter | |
Martens et al. | A 69-dB SNDR 300-MS/s two-time interleaved pipelined SAR ADC in 16-nm CMOS FinFET with capacitive reference stabilization | |
Zhong et al. | A 12b 180MS/s 0.068 mm 2 with full-calibration-integrated pipelined-SAR ADC | |
Esmailiyan et al. | A 0.36-V 5-MS/s time-mode flash ADC with Dickson-charge-pump-based comparators in 28-nm CMOS | |
Lee et al. | A 12b 50 MS/s 21.6 mW 0.18$\mu $ m CMOS ADC Maximally Sharing Capacitors and Op-Amps | |
Shen et al. | A 10-bit 100-MS/s SAR ADC with always-on reference ripple cancellation | |
Wang et al. | Design and implementation of a rail-to-rail 460-kS/s 10-bit SAR ADC for the power-efficient capacitance measurement | |
Luu et al. | A 12-bit 300-MS/s SAR ADC with inverter-based preamplifier and common-mode-regulation DAC in 14-nm CMOS FinFET | |
Alhoshany et al. | A 45.8 fJ/Step, energy-efficient, differential SAR capacitance-to-digital converter for capacitive pressure sensing | |
Shen et al. | A 6-bit 800-MS/s pipelined A/D converter with open-loop amplifiers | |
Kumar et al. | Design of hybrid flash-SAR ADC using an inverter based comparator in 28 nm CMOS | |
Lee | Power and Bandwidth Scalable 10-b 30-MS/s SAR ADC | |
Meng et al. | A 1.2-V 2.87-μ W 94.0-dB SNDR Discrete-Time 2–0 MASH Delta-Sigma ADC | |
Shi et al. | Data converters for wireless standards |