Reddy et al., 2013 - Google Patents
Facile synthesis of Co 3 O 4 by molten salt method and its Li-storage performanceReddy et al., 2013
- Document ID
- 11863256779318639956
- Author
- Reddy M
- Beichen Z
- Loh K
- Chowdari B
- Publication year
- Publication venue
- CrystEngComm
External Links
Snippet
We synthesized Co3O4 compounds using different molten salts such as LiNO3: LiOH, LiNO3: LiCl, NaNO3: KNO3, KCl and studied their morphology and Li-storage properties. Eleven samples were prepared at various temperatures ranging from 180° C to 710° C and …
- 239000011780 sodium chloride 0 title abstract description 37
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Reddy et al. | Facile synthesis of Co 3 O 4 by molten salt method and its Li-storage performance | |
Eftekhari | Low voltage anode materials for lithium-ion batteries | |
Wu et al. | Solvothermal coating LiNi0. 8Co0. 15Al0. 05O2 microspheres with nanoscale Li2TiO3 shell for long lifespan Li-ion battery cathode materials | |
Reddy et al. | Molten salt synthesis and energy storage studies on CuCo 2 O 4 and CuO· Co 3 O 4 | |
Zou et al. | Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries | |
Reddy et al. | Molten synthesis of ZnO. Fe3O4 and Fe2O3 and its electrochemical performance | |
Rahman et al. | Basic molten salt process—A new route for synthesis of nanocrystalline Li4Ti5O12–TiO2 anode material for Li-ion batteries using eutectic mixture of LiNO3–LiOH–Li2O2 | |
Hao et al. | Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries | |
Zheng et al. | Fluorine-doped carbon surface modification of Li-rich layered oxide composite cathodes for high performance lithium-ion batteries | |
Luo et al. | Electrospun ZnO–SnO2 composite nanofibers with enhanced electrochemical performance as lithium-ion anodes | |
Liu et al. | Direct growth Fe2O3 nanorods on carbon fibers as anode materials for lithium ion batteries | |
Lee et al. | Electrochemical properties of P2-type Na2/3Ni1/3Mn2/3O2 plates synthesized by spray pyrolysis process for sodium-ion batteries | |
Yi et al. | Li-rich layered/spinel heterostructured special morphology cathode material with high rate capability for Li-ion batteries | |
Reddy et al. | Molten salt method of preparation and cathodic studies on layered-cathode materials Li (Co0. 7Ni0. 3) O2 and Li (Ni0. 7Co0. 3) O2 for Li-ion batteries | |
Wu et al. | LiNi0. 5Mn1. 5O4 nano-submicro cubes as high-performance 5 V cathode materials for lithium-ion batteries | |
Li et al. | Design and modification of cathode materials for high energy density aluminum-ion batteries: a review | |
Marzuki et al. | Enhanced lithium storage in Co3O4/carbon anode for Li-ion batteries | |
Zhang et al. | Electrochemical in situ X-ray probing in lithium-ion and sodium-ion batteries | |
Xiao et al. | Hydrothermal synthesis of orthorhombic LiMnO 2 nano-particles and LiMnO 2 nanorods and comparison of their electrochemical performances | |
Wang et al. | Realization of superior electrochemical performances for ZnMoO4 anode material through the construction strategy of 3D flower-like single crystalline | |
Nie et al. | Synthesis of nanostructured materials by using metal-cyanide coordination polymers and their lithium storage properties | |
Ji et al. | Complementary stabilization by core/sheath carbon nanofibers/spongy carbon on submicron tin oxide particles as anode for lithium-ion batteries | |
Banerjee et al. | Materials for electrodes of Li-ion batteries: issues related to stress development | |
Reddy et al. | Facile one pot molten salt synthesis of nano (M1/2Sb1/2Sn) O4 (M= V, Fe, In) | |
Kang et al. | Synthesis and electrochemical properties of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials by electrospinning process |