Hu et al., 2021 - Google Patents
High-quality MR fingerprinting reconstruction using structured low-rank matrix completion and subspace projectionHu et al., 2021
- Document ID
- 11635249296310332750
- Author
- Hu Y
- Li P
- Chen H
- Zou L
- Wang H
- Publication year
- Publication venue
- IEEE Transactions on Medical Imaging
External Links
Snippet
Due to the capability of fast multiparametric quantitative imaging, magnetic resonance fingerprinting (MRF) is becoming a promising quantitative magnetic resonance imaging approach. However, the artifacts caused by the highly undersampled data acquisition lead …
- 239000011159 matrix material 0 title abstract description 68
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5611—Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
- G01R33/5612—Parallel RF transmission, i.e. RF pulse transmission using a plurality of independent transmission channels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56341—Diffusion imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5615—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5601—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
- G01R33/4625—Processing of acquired signals, e.g. elimination of phase errors, baseline fitting, chemometric analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4806—Functional imaging of brain activation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/483—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution | |
Pramanik et al. | Deep generalization of structured low-rank algorithms (Deep-SLR) | |
Bustin et al. | High‐dimensionality undersampled patch‐based reconstruction (HD‐PROST) for accelerated multi‐contrast MRI | |
Zhao et al. | Maximum likelihood reconstruction for magnetic resonance fingerprinting | |
Hu et al. | High-quality MR fingerprinting reconstruction using structured low-rank matrix completion and subspace projection | |
Zhao et al. | Model-based MR parameter mapping with sparsity constraints: parameter estimation and performance bounds | |
Cline et al. | AIR-MRF: accelerated iterative reconstruction for magnetic resonance fingerprinting | |
Roohi et al. | Multi-dimensional low rank plus sparse decomposition for reconstruction of under-sampled dynamic MRI | |
Zou et al. | Dynamic imaging using a deep generative SToRM (Gen-SToRM) model | |
Haldar et al. | Low-rank approximations for dynamic imaging | |
Wang et al. | One-dimensional deep low-rank and sparse network for accelerated MRI | |
Poddar et al. | Manifold recovery using kernel low-rank regularization: Application to dynamic imaging | |
CN113971706B (en) | Rapid magnetic resonance intelligent imaging method | |
US20230236271A1 (en) | Systems and methods for accelerated magnetic resonance imaging (mri) reconstruction and sampling | |
Zhang et al. | Accelerated MRI reconstruction with separable and enhanced low-rank Hankel regularization | |
CN112819949B (en) | Magnetic resonance fingerprint image reconstruction method based on structured low-rank matrix | |
Tamir et al. | Computational MRI with physics-based constraints: Application to multicontrast and quantitative imaging | |
Guo et al. | High-resolution oscillating steady-state fMRI using patch-tensor low-rank reconstruction | |
Wang et al. | Undersampled dynamic magnetic resonance imaging using kernel principal component analysis | |
Babu et al. | Fast low rank column-wise compressive sensing for accelerated dynamic MRI | |
Balachandrasekaran et al. | Recovery of damped exponentials using structured low rank matrix completion | |
Nakarmi et al. | Dynamic magnetic resonance imaging using compressed sensing with self-learned nonlinear dictionary (NL-D) | |
Jun et al. | Zero‐DeepSub: Zero‐shot deep subspace reconstruction for rapid multiparametric quantitative MRI using 3D‐QALAS | |
Arif et al. | Accelerated dynamic MRI using kernel-based low rank constraint | |
Liu et al. | Acceleration strategies for MR-STAT: achieving high-resolution reconstructions on a desktop PC within 3 minutes |