Cooper et al., 1981 - Google Patents
Piezoelectric sorption anesthetic sensorCooper et al., 1981
- Document ID
- 11632422890801864838
- Author
- Cooper J
- Edmondson J
- Joseph D
- Newbower R
- Publication year
- Publication venue
- IEEE Transactions on Biomedical Engineering
External Links
Snippet
The piezoelectric sorption detection method is evaluated for use in construction of an inexpensive, rugged, compact, and fast sensor for measuring the concentration of inhalation anesthetics. 10 MHz quartz crystals were coated with various substances and their …
- 230000003444 anaesthetic 0 title abstract description 40
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0011—Sample conditioning
- G01N33/0018—Sample conditioning by diluting a gas
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—Specially adapted to detect a particular component
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2247—Sampling from a flowing stream of gas
- G01N2001/2264—Sampling from a flowing stream of gas with dilution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/24—Suction devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2247—Sampling from a flowing stream of gas
- G01N1/2252—Sampling from a flowing stream of gas in a vehicle exhaust
- G01N2001/2255—Sampling from a flowing stream of gas in a vehicle exhaust with dilution of the sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0006—Calibrating gas analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
- G01N27/22—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating capacitance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
- G01N27/04—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/036—Analysing fluids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/56—Investigating or analyzing materials by the use of thermal means by investigating moisture content
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cotes et al. | Standardization of the measurement of transfer factor (diffusing capacity) | |
Davies et al. | The measurement of metabolic gas exchange and minute volume by mass spectrometry alone | |
S̆panĕl et al. | On‐line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry | |
EP1155318A1 (en) | Methods and apparatus for real time fluid analysis | |
Cooper et al. | Piezoelectric sorption anesthetic sensor | |
US4730478A (en) | Gas analyzer | |
Lockwood et al. | Effect of temperature on the solubility of desflurane, sevoflurane, enflurane and halothane in blood. | |
D'Ottavio et al. | Determination of ambient aerosol sulfur using a continuous flame photometric detection system. II. The measurement of low-level sulfur concentrations under varying atmospheric conditions | |
Monster et al. | Simultaneous determination of trichloroethylene and metabolites in blood and exhaled air by gas chromatography | |
Cohen et al. | The validation of a passive sampler for indoor and outdoor concentrations of volatile organic compounds | |
Colquhoun et al. | An evaluation of the Datex Normac anaesthetic agent monitor | |
Kay et al. | A laboratory investigation of a multigas monitor for anaesthesia (EMMA) | |
DIVINCENZO et al. | The gas chromatographic analysis of methylene chloride in breath, blood, and urine | |
Lundsgaard et al. | In vivo calibration of flow-dependent blood gas catheters | |
Cheney et al. | The development of a sulfur dioxide continuous monitor incorporating a piezo-electric sorption detector | |
Ilsley et al. | An evaluation of three volatile anaesthetic agent monitors | |
Graham et al. | Implementing the Three‐Equation Method of Measuring Single Breath Carbon Monoxide Diffusing Capacity | |
Wexler | Measurement of humidity in the free atmosphere near the surface of the earth | |
ENDO et al. | The evaluation of epoxy resin coated quartz crystal humidity sensor and the measurement of water evaporation from human surfaces | |
Gray | A static calibration method for the gas chromatographic determination of per cent concentrations of volatile anaesthetic agents | |
Milanko et al. | Improved methodology for testing and characterization of piezodelectric gas sensors | |
Von Der Hardt et al. | Reliability in pneumotachographic measurements | |
Westenskow et al. | Laboratory evaluation of the vital signs (ICOR) piezoelectric anesthetic agent analyzer | |
Auchincloss Jr et al. | Control of water vapor during rapid analysis of respiratory gases in expired air. | |
Webb et al. | Recording dielectric hygrometer for expired air |