Peng et al., 2022 - Google Patents
Hers superpixels: Deep affinity learning for hierarchical entropy rate segmentationPeng et al., 2022
View PDF- Document ID
- 11517856491283998552
- Author
- Peng H
- Aviles-Rivero A
- Schönlieb C
- Publication year
- Publication venue
- Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
External Links
Snippet
Superpixels serve as a powerful preprocessing tool in many computer vision tasks. By using superpixel representation, the number of image primitives can be largely reduced by orders of magnitudes. The majority of superpixel methods use handcrafted features, which usually …
- 230000011218 segmentation 0 title abstract description 47
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6218—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/34—Segmentation of touching or overlapping patterns in the image field
- G06K9/342—Cutting or merging image elements, e.g. region growing, watershed, clustering-based techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6296—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K2209/00—Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Superpixel segmentation: A benchmark | |
Liu et al. | Learning gaussian instance segmentation in point clouds | |
Arteta et al. | Interactive object counting | |
Tighe et al. | Superparsing: scalable nonparametric image parsing with superpixels | |
Alush et al. | Ensemble segmentation using efficient integer linear programming | |
CN110188763B (en) | Image significance detection method based on improved graph model | |
Hu et al. | Unsupervised simplification of image hierarchies via evolution analysis in scale-sets framework | |
Li et al. | Superpixel-based object class segmentation using conditional random fields | |
Hu et al. | Markov random fields for sketch based video retrieval | |
Amer et al. | Monocular extraction of 2.1 d sketch using constrained convex optimization | |
Peng et al. | Hers superpixels: Deep affinity learning for hierarchical entropy rate segmentation | |
Tighe et al. | Scene parsing with object instance inference using regions and per-exemplar detectors | |
Song et al. | Joint graph learning and video segmentation via multiple cues and topology calibration | |
Zhou et al. | An efficient two-stage region merging method for interactive image segmentation | |
Tung et al. | Scene parsing by nonparametric label transfer of content-adaptive windows | |
Filali et al. | Graph ranking based butterfly segmentation in ecological images | |
Kalinin et al. | A graph based approach to hierarchical image over-segmentation | |
Zhang et al. | Adaptive fusion affinity graph with noise-free online low-rank representation for natural image segmentation | |
Zhang et al. | Simple and fast image superpixels generation with color and boundary probability | |
Pan et al. | Texture relative superpixel generation with adaptive parameters | |
Chi et al. | Saliency detection via integrating deep learning architecture and low-level features | |
Wang et al. | Adaptive hypergraph superpixels | |
Hassan et al. | Salient object detection based on CNN fusion of two types of saliency models | |
Luo et al. | Image segmentation with multi-feature fusion in compressed domain based on region-based graph. | |
Strassburg et al. | On the influence of superpixel methods for image parsing |