Dai et al., 2023 - Google Patents
Soluble polybenzimidazoles incorporating Tröger's base for high-temperature proton exchange membrane fuel cellsDai et al., 2023
- Document ID
- 11423254713752940044
- Author
- Dai J
- Zhang Y
- Gong C
- Wan Y
- Zhuang Y
- Publication year
- Publication venue
- Chemical Engineering Journal
External Links
Snippet
In this work, a novel dicarboxylic acid (TB–COOH) containing Tröger's base (TB) was synthesized, and newly TB-based polybenzimidazole (PBI) membranes were prepared as electrolytes for high-temperature proton exchange membrane (HT-PEM) fuel cells. The TB …
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped of ion-exchange resins Use of macromolecular compounds as anion B01J41/14 or cation B01J39/20 exchangers
- C08J5/22—Films, membranes, or diaphragms
- C08J5/2206—Films, membranes, or diaphragms based on organic and/or inorganic macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/18—Polybenzimidazoles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/02—Polyamines
- C08G73/026—Wholly aromatic polyamines
- C08G73/0266—Polyanilines or derivatives thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1025—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1081—Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
- C08J2371/00—Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
- C08J2371/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08J2371/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08J2371/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dai et al. | Soluble polybenzimidazoles incorporating Tröger’s base for high-temperature proton exchange membrane fuel cells | |
Tian et al. | Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications | |
Fang et al. | Preparation and characterization of novel pyridine-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cells | |
Li et al. | Dimensionally-stable phosphoric acid–doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells | |
Gao et al. | Novel cardo poly (arylene ether sulfone) s with pendant sulfonated aliphatic side chains for proton exchange membranes | |
Wang et al. | Proton-conducting membranes from poly (ether sulfone) s grafted with sulfoalkylamine | |
Yuan et al. | Poly (imide benzimidazole) s for high temperature polymer electrolyte membrane fuel cells | |
Mistri et al. | Naphthalene dianhydride based semifluorinated sulfonated copoly (ether imide) s: Synthesis, characterization and proton exchange properties | |
Yao et al. | Pendant-group cross-linked highly sulfonated co-polyimides for proton exchange membranes | |
Chen et al. | Crosslinked sulfonated poly (arylene ether ketone) membranes bearing quinoxaline and acid–base complex cross-linkages for fuel cell applications | |
Wang et al. | Highly compatible acid–base blend membranes based on sulfonated poly (ether ether ketone) and poly (ether ether ketone-alt-benzimidazole) for fuel cells application | |
Wang et al. | Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs | |
Li et al. | Synthesis and properties of sulfonated polyimide–polybenzimidazole copolymers as proton exchange membranes | |
Li et al. | Sulfonated polyimides bearing benzimidazole groups for proton exchange membranes | |
Pu et al. | Synthesis and characterization of fluorine‐containing polybenzimidazole for proton conducting membranes in fuel cells | |
Li et al. | Novel branched sulfonated poly (ether ether ketone) s membranes for direct methanol fuel cells | |
Mistri et al. | Synthesis and characterization of new fluorinated poly (ether imide) copolymers with controlled degree of sulfonation for proton exchange membranes | |
Zhang et al. | Novel acid–base polyimides synthesized from binaphthalene dianhydrie and triphenylamine-containing diamine as proton exchange membranes | |
Gong et al. | Synthesis of poly (arylene ether sulfone) s with locally and densely sulfonated pentiptycene pendants as highly conductive polymer electrolyte membranes | |
Mandal et al. | Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes | |
Lee et al. | Structural influence of hydrophobic diamine in sulfonated poly (sulfide sulfone imide) copolymers on medium temperature PEM fuel cell | |
Li et al. | New highly proton-conducting membrane based on sulfonated poly (arylene ether sulfone) s containing fluorophenyl pendant groups, for low-temperature polymer electrolyte membrane fuel cells | |
Sheng et al. | Synthesis and properties of novel sulfonated polybenzimidazoles from disodium 4, 6-bis (4-carboxyphenoxy) benzene-1, 3-disulfonate | |
Gong et al. | Synthesis of highly sulfonated poly (arylene ether sulfone) s with sulfonated triptycene pendants for proton exchange membranes | |
Wang et al. | Soluble sulfonated polybenzothiazoles containing naphthalene for use as proton exchange membranes |