Budzier et al., 2006 - Google Patents
Fast microbolometer-based infrared camera systemBudzier et al., 2006
View PDF- Document ID
- 11481586558068788166
- Author
- Budzier H
- Krause V
- Böhmer S
- Gerlach G
- Hoffmann U
- Publication year
- Publication venue
- DIAS Infrared GmBH
External Links
Snippet
The newly developed camera system is based on a long-wave infrared range (LWIR) microbolometer camera system with 384× 288 pixels. The camera operates at 100 Hz. The camera system consists of a camera head and a PC frame grabber plug-in board with …
- 238000000034 method 0 abstract description 7
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/08—Optical features
- G01J5/0803—Optical elements not provided otherwise, e.g. optical manifolds, gratings, holograms, cubic beamsplitters, prisms, particular coatings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/10—Radiation pyrometry using electric radiation detectors
- G01J5/20—Radiation pyrometry using electric radiation detectors using resistors, thermistors, or semi-conductors sensitive to radiation
- G01J5/22—Electrical features
- G01J5/24—Use of a specially-adapted circuit, e.g. bridge circuit
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/04—Casings Mountings
- G01J5/041—Mountings in enclosures or in a particular environment
- G01J5/043—Prevention or determination of dust, smog or clogging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation
- G01J2005/067—Compensating for environment parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation
- G01J5/061—Arrangements for eliminating effects of disturbing radiation using cooling or thermostating of parts of the apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/026—Control of working procedures of a pyrometer, other than calibration ; Detecting failures in the functioning of a pyrometer; Bandwidth calculation; Gain control; Security control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/10—Radiation pyrometry using electric radiation detectors
- G01J5/12—Radiation pyrometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
- G01J5/14—Electrical features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J2005/0077—Imaging
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/225—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/232—Devices for controlling television cameras, e.g. remote control; Control of cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in, e.g. mobile phones, computers or vehicles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/33—Transforming infra-red radiation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/335—Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
- H04N5/357—Noise processing, e.g. detecting, correcting, reducing or removing noise
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/50—Radiation pyrometry using techniques specified in the subgroups below
- G01J5/52—Radiation pyrometry using techniques specified in the subgroups below using comparison with reference sources, e.g. disappearing-filament pyrometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J2005/0048—Calibrating; Correcting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101236551B1 (en) | Radiometry using an uncooled microbolometer detector and infra-red camera using thereof | |
CN107836111B (en) | System and method for enhanced dynamic range infrared imaging | |
US20120320189A1 (en) | Thermal imager that analyzes temperature measurement calculation accuracy | |
CN101431597A (en) | Method of reading a two-dimensional pixel matrix and device for implementing said method | |
US6969856B1 (en) | Two band imaging system | |
Budzier et al. | Fast microbolometer-based infrared camera system | |
Murphy et al. | High-sensitivity 25-micron microbolometer FPAs | |
Butler et al. | Low-cost uncooled microbolometer imaging system for dual use | |
Tankut et al. | An 80x80 microbolometer type thermal imaging sensor using the LWIR-band CMOS infrared (CIR) technology | |
Pope et al. | Commercial and custom 160x120, 256x1, and 512x3 pixel bolometric FPAs | |
Fièque et al. | Uncooled amorphous silicon XGA IRFPA with 17μm pixel-pitch for high end applications | |
Jin et al. | Infrared nonuniformity correction and radiometric calibration technology using U-shaped blackbody | |
Minassian et al. | Uncooled amorphous silicon TEC-less 1/4 VGA IRFPA with 25 µm pixel-pitch for high volume applications | |
Tankut et al. | A 160x120 LWIR-band CMOS Infrared (CIR) microbolometer | |
Howard et al. | DRS U6000 640x480 VOx uncooled IR focal plane | |
Tempelhahn et al. | Improving the shutter-less compensation method for TEC-less microbolometer-based infrared cameras | |
Orżanowski et al. | Test and evaluation of reference-based nonuniformity correction methods for microbolometer infrared detectors | |
Bieszczad et al. | Measurement of thermal behavior of detector array surface with the use of microscopic thermal camera | |
US20020030162A1 (en) | Thermal imaging system | |
Wood et al. | IR SnapShot camera | |
Kienitz | Thermal imaging as a modern form of pyrometry | |
Murphy et al. | High-sensitivity (25-um pitch) microbolometer FPAs | |
Cao et al. | Infrared thermal imaging high-precision temperature measurement technology | |
Robert et al. | 2.1-Low power consumption infrared thermal sensor array for smart detection and thermal imaging applications | |
Strakowski et al. | Temperature drift compensation in metrological microbolometer camera using multi sensor approach |