Nothing Special   »   [go: up one dir, main page]

Paskov, 2015 - Google Patents

Algorithms and subsystems for next generation optical networks

Paskov, 2015

View PDF
Document ID
11221110013045265875
Author
Paskov M
Publication year

External Links

Snippet

This thesis investigates algorithms and subsystems for digital coherent optical networks to alleviate system requirements and enable spectrally efficient systems. Spectral shaping of individual channel is investigated to mitigate backreflections in bi-directional Passive Optical …
Continue reading at discovery.ucl.ac.uk (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers i.e., optical receivers using an optical local oscillator
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/676Optical arrangements in the receiver for all-optical demodulation of the input optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers i.e., optical receivers using an optical local oscillator
    • H04B10/613Coherent receivers i.e., optical receivers using an optical local oscillator including phase diversity, e.g., having in-phase and quadrature branches, as in QPSK coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying includes continuous phase systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines

Similar Documents

Publication Publication Date Title
Vujicic Optical multicarrier sources for spectrally efficient optical networks
Zhang et al. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses
Richter et al. Coherent in-line substitution of OFDM subcarriers using fiber-frequency conversion and free-running lasers
Makovejs High-speed optical fibre transmission using advanced modulation formats
Paskov Algorithms and subsystems for next generation optical networks
Behrens Mitigation of nonlinear impairments for advanced optical modulation formats
US20230085546A1 (en) Perturbative-based nonlinear compensation for digital subcarrier systems
Lyu et al. Sip-based ssbi cancellation for ofdm
Othman et al. Spectrally-sliced coherent receiver utilizing a gain-switched optical frequency comb
de Jauregui Ruiz Advanced modulation formats and nonlinear mitigation for spectral efficient optical transmission systems
Müller Advanced modulation formats and signal processing for high speed spectrally efficient optical communications
Lavery Digital coherent receivers for passive optical networks
Arnould Ultra-wideband and high symbol rate transmission systems for next-generation optical fiber communications
Ferreira et al. Real-time flexible heterogeneous UDWDM system for coherent PON
Skvortcov Optimization of digital coherent transceivers for optical communication systems
Perin Spectrally and power efficient optical communication systems
Liu Cognitive Transceivers and Systems for Next Generation Photonic Networks
Huang et al. Distortion-Aware Phase Retrieval Receiver for High-Order QAM Transmission with Carrierless Intensity-Only Measurements
Barros Orthogonal frequency-division multiplexing for optical communications
da Silva Ferreira Advanced Digital Signal Processing for Flexible Optical Access Networks
Detwiler Continuous phase modulation for high speed fiber-optic links
Alam Subsystems and systems for direct detect optical fiber transmission
Mazur High Spectral Efficiency Fiber-Optic Transmission Systems Using Pilot Tones
Martins Low Complexity Digital Signal Processing Techniques for Coherent Optical Systems
Ghasemi Real-time digital signal processing for new wavelength-to-the-user optical access networks