Nothing Special   »   [go: up one dir, main page]

Faruk et al., 2010 - Google Patents

Multi-impairments monitoring from the equalizer in a digital coherent optical receiver

Faruk et al., 2010

View PDF
Document ID
10940425528393333108
Author
Faruk M
Mori Y
Zhang C
Kikuchi K
Publication year
Publication venue
36th European Conference and Exhibition on Optical Communication

External Links

Snippet

We propose a simple and precise algorithm to monitor multiple impairments such as CD, PMD, and PDL, which are jointly mitigated in the adaptive equalizer of a digital coherent optical receiver. We validate our algorithm by dual-polarization QPSK transmission …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers i.e., optical receivers using an optical local oscillator
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6162Compensation of polarization related effects, e.g., PMD, PDL
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • H04B10/2557Cross-phase modulation [XPM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2572Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to forms of polarisation-dependent distortion other than PMD
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/676Optical arrangements in the receiver for all-optical demodulation of the input optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation, e.g. polarization switching or transmission of a single data stream on two orthogonal polarizations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers i.e., optical receivers using an optical local oscillator
    • H04B10/613Coherent receivers i.e., optical receivers using an optical local oscillator including phase diversity, e.g., having in-phase and quadrature branches, as in QPSK coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Similar Documents

Publication Publication Date Title
Chen et al. Dual polarization full-field signal waveform reconstruction using intensity only measurements for coherent communications
Kikuchi Fundamentals of coherent optical fiber communications
US10116410B2 (en) Optical transmitters and receivers using polarization multiplexing
Kikuchi Digital coherent optical communication systems: Fundamentals and future prospects
Tsukamoto et al. Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation
US11799560B2 (en) Asymmetric direct detection of optical signals
Peng et al. Transmission of high-baud PDM-64QAM signals
Chen et al. Full-field, carrier-less, polarization-diversity, direct detection receiver based on phase retrieval
Selmi et al. Block-wise digital signal processing for PolMux QAM/PSK optical coherent systems
Yojiro et al. Novel FIR-filter configuration tolerant to fast phase fluctuations in digital coherent receivers for higher-order QAM signals
Estarán et al. Quaternary polarization-multiplexed subsystem for high-capacity IM/DD optical data links
Wu et al. Dual-carrier-assisted phase retrieval for polarization division multiplexing
Vgenis et al. Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers
Huang et al. MIMO processing with linear beat interference cancellation for space division multiplexing self-homodyne coherent transmission
Yu et al. Experimental demonstration of polarization-dependent loss monitoring and compensation in Stokes space for coherent optical PDM-OFDM
Visintin et al. Adaptive digital equalization in optical coherent receivers with Stokes-space update algorithm
Ziaie et al. Adaptive Stokes-based polarization demultiplexing for long-haul multi-subcarrier systems
Faruk et al. Proper polarization demultiplexing in coherent optical receiver using constant modulus algorithm with training mode
Sharma et al. Improved adaptive equalization with fixed step size CMA for DP-QPSK DWDM system
Faruk et al. Multi-impairments monitoring from the equalizer in a digital coherent optical receiver
Mantzoukis et al. Performance comparison of electronic PMD equalizers for coherent PDM QPSK systems
Secondini Optical equalization: System modeling and performance evaluation
Faruk Modified CMA based blind equalization and carrier-phase recovery in PDM-QPSK coherent optical receivers
Sim et al. Direct-detection receiver for polarization-division-multiplexed OOK signals
Mussolin et al. DSP-based compensation of non-linear impairments in 100 Gb/s PolMux QPSK