Carpenter, 2021 - Google Patents
Production logging, openhole-log interpretation help discover new oil reservesCarpenter, 2021
- Document ID
- 10779114086152010952
- Author
- Carpenter C
- Publication year
- Publication venue
- Journal of Petroleum Technology
External Links
Snippet
This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30644,“Discovery of New Oil Reserves by Combining Production Logging With Openhole-Log Interpretation in Low-Resistivity Pay,” by Xinlei Shi, Peichun Wang, and …
- 238000004519 manufacturing process 0 title abstract description 16
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/10—Locating fluid leaks, intrusions or movements
- E21B47/1015—Locating fluid leaks, intrusions or movements using tracers: using radioactivity
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/10—Locating fluid leaks, intrusions or movements
- E21B47/102—Locating fluid leaks, intrusions or movements using electrical indications: using light radiations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/08—Obtaining fluid samples or testing fluids, in boreholes or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/10—Locating fluid leaks, intrusions or movements
- E21B47/1005—Locating fluid leaks, intrusions or movements using thermal measurements
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
- E21B2043/0115—Drilling for or production of natural gas hydrate reservoirs; Drilling through or monitoring of formations containing gas hydrates
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/006—Production of coal-bed methane
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface or from the surface to the well, e.g. for logging while drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/08—Screens or liners
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/30—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electromagnetic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V5/00—Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
- G01V5/04—Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
- G01V5/08—Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V99/00—Subject matter not provided for in other groups of this subclass
- G01V99/005—Geomodels or geomodelling, not related to particular measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/44—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
- G01V1/48—Processing data
- G01V1/50—Analysing data
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Waterflood direction and front characterization with four-step work flow: a case study in changqing oil field China | |
US20130262069A1 (en) | Targeted site selection within shale gas basins | |
Amani et al. | Prediction of rock strength using drilling data and sonic logs | |
CN103046923A (en) | Method for fast recognizing low-resistivity oil and gas reservoirs through optimizing drilling mud | |
Pan et al. | Fieldwide determination of directional permeabilities using transient well testing | |
Saboorian-Jooybari | A structured mobility-based methodology for quantification of net-pay cutoff in petroleum reservoirs | |
Cheng et al. | Productivity prediction from well logs in variable grain size reservoirs cretaceous Qishn formation, republic of Yemen | |
Chowdhury et al. | Production logging and its implementation: a technical review | |
Toublanc et al. | Ekofisk Field: fracture permeability evaluation and implementation in the flow model | |
Carpenter | Production logging, openhole-log interpretation help discover new oil reserves | |
Olowoyeye et al. | Solving formation evaluation challenges using a combination of open and cased hole logging technology | |
Alghazal et al. | Technology integration to assess end-point oil saturation of the relative permeability curves | |
Al-Rushaid et al. | Downhole Estimation of Relative Permeability With Integration of Formation-Tester Measurements and Advanced Well Logs | |
Maju-Oyovwikowhe et al. | Petro-physical analysis of well logs for reservoir evaluation: a case study of Well 1 and 2 of the ‘Ictorian’field in the Niger Delta Basin | |
Jianxin et al. | Productivity Evaluation of Pronounced Heterogeneous Gas Reservoir Drilled at High Overbalance | |
Zhang et al. | Real-Time sanding assessment for sand-free fluid sampling in weakly consolidated reservoirs, a case study from Bohai Bay, China | |
Khan et al. | Deciphering Low Resistivity Pay To Derisk a Commercial Discovery: Case Study from the Norwegian Sea | |
Baniasadi et al. | A triple-porosity radial composite model for two-phase well test analysis of volatile oil in fractured-vuggy reservoirs | |
Farran et al. | An integrated approach for evaluating and characterising horizontal well inflow and productivity in heterogeneous carbonate reservoirs | |
Alvarez et al. | Evaluation of a Fractured Tight Reservoir in Real-Time: The importance of Detecting Open Fractures While Drilling with Accurate Mud Flow Measurement | |
Noah | Pore pressure evaluation from well logging and drilling exponent at Amal field, Gulf of Suez area, Egypt | |
Chikwe | Inferences Derived from Reservoir Permeability Estimation Using Static and Dynamic Data: Core Data Analysis Versus Drawdown Tests | |
Tao et al. | Pulsed–Neutron Log Design for Uncertain Water Salinity Reservoirs in an Oil Producer Offshore | |
Li et al. | Improving Productivity Estimation in Development Wells Using Lwd Formation Testers and Geochemical Logs | |
Alghareeb et al. | Integrated Advanced Technologies for Heavy Oil Identification Application in Saudi Arabia |