Alhulayil et al., 2020 - Google Patents
Novel LAA waiting and transmission time configuration methods for improved LTE-LAA/Wi-Fi coexistence over unlicensed bandsAlhulayil et al., 2020
View PDF- Document ID
- 10638696476034019515
- Author
- Alhulayil M
- López-Benítez M
- Publication year
- Publication venue
- IEEE Access
External Links
Snippet
Long Term Evolution-Licensed Assisted Access (LTE-LAA) has been pointed out as a key solution to cope with the increasing amounts of data traffic and the scarcity of the licensed spectrum. The 3rd Generation Partnership Project (3GPP) has standardised LAA to operate …
- 230000005540 biological transmission 0 title abstract description 88
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0833—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
- H04W74/0841—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure with collision treatment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0808—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
- H04W74/0816—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
- H04W72/1205—Schedule definition, set-up or creation
- H04W72/1215—Schedule definition, set-up or creation for collaboration of different radio technologies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
- H04W72/1205—Schedule definition, set-up or creation
- H04W72/1247—Schedule definition, set-up or creation based on priority of the information source or recipient
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
- H04W72/0406—Wireless resource allocation involving control information exchange between nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
- H04W72/08—Wireless resource allocation where an allocation plan is defined based on quality criteria
- H04W72/085—Wireless resource allocation where an allocation plan is defined based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/08—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
- H04W74/0866—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
- H04W74/0875—Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access with assigned priorities based access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
- H04W72/1278—Transmission of control information for scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource
- H04W72/0446—Wireless resource allocation where an allocation plan is defined based on the type of the allocated resource the resource being a slot, sub-slot or frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W74/00—Wireless channel access, e.g. scheduled or random access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC [Transmission power control]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rupasinghe et al. | Reinforcement learning for licensed-assisted access of LTE in the unlicensed spectrum | |
Alhulayil et al. | Novel LAA waiting and transmission time configuration methods for improved LTE-LAA/Wi-Fi coexistence over unlicensed bands | |
Rupasinghe et al. | Licensed-assisted access for WiFi-LTE coexistence in the unlicensed spectrum | |
Jia et al. | A channel sensing based design for LTE in unlicensed bands | |
Beluri et al. | Mechanisms for LTE coexistence in TV white space | |
Adame et al. | Capacity analysis of IEEE 802.11 ah WLANs for M2M communications | |
Pei et al. | Performance analysis of licensed-assisted access to unlicensed spectrum in LTE release 13 | |
Maglogiannis et al. | An adaptive LTE listen-before-talk scheme towards a fair coexistence with Wi-Fi in unlicensed spectrum | |
Abdelfattah et al. | Modeling and performance analysis of Wi-Fi networks coexisting with LTE-U | |
Alhulayil et al. | Coexistence mechanisms for LTE and Wi-Fi networks over unlicensed frequency bands | |
US10638514B2 (en) | Method for operating a plurality of wireless networks | |
Alhulayil et al. | LTE/Wi-Fi coexistence in unlicensed bands based on dynamic transmission opportunity | |
Yoon et al. | COTA: Channel occupancy time adaptation for LTE in unlicensed spectrum | |
Ahn et al. | Full-duplex MAC protocol using buffer status reports during unused uplink periods in WLAN | |
Haghshenas et al. | NR-U and Wi-Fi coexistence enhancement exploiting multiple bandwidth parts assignment | |
Sathya et al. | Association fairness in Wi-Fi and LTE-U coexistence | |
Jian et al. | Duet: An adaptive algorithm for the coexistence of LTE-U and WiFi in Unlicensed spectrum | |
Xing et al. | Adaptive spectrum sharing of LTE co-existing with WLAN in unlicensed frequency bands | |
Baswade et al. | Modelling and analysis of Wi-Fi and LAA coexistence with priority classes | |
Alhulayil et al. | Static contention window method for improved LTE-LAA/Wi-Fi coexistence in unlicensed bands | |
Alhulayil et al. | Methods for the allocation of almost blank subframes with fixed duty cycle for improved LTE-U/Wi-Fi coexistence | |
Alhulayil et al. | Dynamic contention window methods for improved coexistence between LTE and Wi-Fi in unlicensed bands | |
Zhou et al. | Performance evaluation for coexistence of LTE and WiFi | |
Yan et al. | A Markov-based modelling with dynamic contention window adaptation for LAA and WiFi coexistence | |
Baswade et al. | A novel coexistence scheme for IEEE 802.11 for user fairness and efficient spectrum utilization in the presence of LTE-U |