Nothing Special   »   [go: up one dir, main page]

Wemhoff et al., 2010 - Google Patents

Predictions of energy savings in HVAC systems by lumped models

Wemhoff et al., 2010

Document ID
10624487501684981682
Author
Wemhoff A
Frank M
Publication year
Publication venue
Energy and Buildings

External Links

Snippet

An approach to optimizing the energy efficiency of a Heating, Ventilating, and Air Conditioning (HVAC) system is presented that utilizes computational predictions of the effect of heat load distribution on moist air temperature, density, and humidity variation. Lumped …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/0009Electrical control or safety systems or apparatus
    • F24F11/001Control systems or circuits characterised by their inputs, e.g. using sensors
    • F24F2011/0041Pressure
    • F24F2011/0042Air pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/0009Electrical control or safety systems or apparatus
    • F24F11/0086Control systems or circuits characterised by other control features, e.g. display or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/02Arrangements or mounting of control or safety devices
    • F24F11/04Arrangements or mounting of control or safety devices solely for controlling the rate of air-flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/0009Electrical control or safety systems or apparatus
    • F24F11/0076Control systems or circuits characterised by their outputs, e.g. using a variable flow fan
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/0001Control or safety systems or apparatus for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/048Systems in which all treatment is given in the central station, i.e. all-air systems with temperature control at constant rate of air-flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies
    • Y02B30/76Centralised control

Similar Documents

Publication Publication Date Title
Wemhoff et al. Predictions of energy savings in HVAC systems by lumped models
Xu et al. A model-based optimal ventilation control strategy of multi-zone VAV air-conditioning systems
Moon Performance of ANN-based predictive and adaptive thermal-control methods for disturbances in and around residential buildings
Wang et al. A simplified modeling of cooling coils for control and optimization of HVAC systems
Liang et al. Design of intelligent comfort control system with human learning and minimum power control strategies
Yao et al. A state-space model for dynamic response of indoor air temperature and humidity
Facao et al. Thermal behaviour of closed wet cooling towers for use with chilled ceilings
Wang et al. Air handling unit supply air temperature optimal control during economizer cycles
Jin et al. A simple dynamic model of cooling coil unit
Vakiloroaya et al. Energy-efficient HVAC systems: Simulation–empirical modelling and gradient optimization
Sun et al. A CFD-based test method for control of indoor environment and space ventilation
Gao et al. An optimization strategy for the control of small capacity heat pump integrated air-conditioning system
Ma et al. Online optimization method of cooling water system based on the heat transfer model for cooling tower
Zhang et al. Experimental study on control performance comparison between model predictive control and proportion-integral-derivative control for radiant ceiling cooling integrated with underfloor ventilation system
Chen et al. A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems
Lei et al. Predictive control of multi-zone variable air volume air-conditioning system based on radial basis function neural network
Cheng et al. A robust air balancing method for dedicated outdoor air system
JP2005155973A (en) Air-conditioning facility
Gao et al. Space temperature control of a GSHP-integrated air-conditioning system
Wu et al. Model-based analysis and simulation of airflow control systems of ventilation units in building environments
Li et al. Adaptive predictive control method for improving control stability of air-conditioning terminal in public buildings
Yin et al. Using a Mass and Energy Balance Approach to Model the Performance of Parallel Fan-Powered Terminal Units with Fixed-Airflow Fans.
Xu et al. A novel hybrid steady-state model based controller for simultaneous indoor air temperature and humidity control
Cai et al. A generalized control heuristic and simplified model predictive control strategy for direct-expansion air-conditioning systems
Abedi et al. Smart HVAC systems—Adjustable airflow direction