Fonseca et al., 2017 - Google Patents
PEDOT electrodeposition on oriented mesoporous silica templates for electrochromic devicesFonseca et al., 2017
- Document ID
- 10662451185778287474
- Author
- Fonseca S
- Moreira T
- Parola A
- Pinheiro C
- Laia C
- Publication year
- Publication venue
- Solar Energy Materials and Solar Cells
External Links
Snippet
Abstract Poly (3, 4-ethylenedioxythiophene)(PEDOT) has been electrochemically polymerized from 3, 4-ethylenedioxythiophene (EDOT) monomers through a vertically oriented mesoporous silica matrix previously formed on FTO electrodes. The mesoporous …
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide   O=[Si]=O 0 title abstract description 158
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/542—Dye sensitized solar cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electrochromic elements
- G02F1/1521—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electrochromic elements based on oxidation reduction in organic liquid solutions, e.g. viologens solutions
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electrochromic elements
- G02F1/1523—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electrochromic elements based on solid inorganic materials, e.g. transition metal compounds, e.g. in combination with a liquid or solid electrolyte
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electrochromic elements
- G02F1/1506—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electrochromic elements based on electrolytic deposition of a non-organic material on or in the vicinity of an electrode
- G02F1/1508—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electrochromic elements based on electrolytic deposition of a non-organic material on or in the vicinity of an electrode using a solid electrolyte
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fonseca et al. | PEDOT electrodeposition on oriented mesoporous silica templates for electrochromic devices | |
Cai et al. | Molecular level assembly for high-performance flexible electrochromic energy-storage devices | |
Xia et al. | Enhanced electrochromics of nanoporous cobalt oxide thin film prepared by a facile chemical bath deposition | |
Huang et al. | New electropolymerized triphenylamine polymer films and excellent multifunctional electrochromic energy storage system materials with real-time monitoring of energy storage status | |
Najafi-Ashtiani et al. | A dual electrochromic film based on nanocomposite of copolymer and WO3 nanoparticles: Enhanced electrochromic coloration efficiency and switching response | |
Zhang et al. | High-performance electrochromic device based on novel polyaniline nanofibers wrapped antimony-doped tin oxide/TiO2 nanorods | |
Li et al. | Stabilizing hybrid electrochromic devices through pairing electrochromic polymers with minimally color-changing ion-storage materials having closely matched electroactive voltage windows | |
Najafi-Ashtiani et al. | A dual electrochromic film based on nanocomposite of aniline and o-toluidine copolymer with tungsten oxide nanoparticles | |
Sydam et al. | Electrochromic device response controlled by an in situ polymerized ionic liquid based gel electrolyte | |
Hong et al. | A red-to-gray poly (3-methylthiophene) electrochromic device using a zinc hexacyanoferrate/PEDOT: PSS composite counter electrode | |
Bayat et al. | Study on the electrochromic properties of polypyrrole layers doped with different dye molecules | |
Alves et al. | Samarium (III) triflate-doped chitosan electrolyte for solid state electrochromic devices | |
Zhang et al. | A conjugated polymer with Electron-withdrawing cyano group enables for flexible asymmetric electrochromic supercapacitors | |
Astratine et al. | Electrodeposition and characterisation of copolymers based on pyrrole and 3, 4-ethylenedioxythiophene in BMIM BF4 using a microcell configuration | |
Dulgerbaki et al. | Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application | |
Xu et al. | Effect of counter anion on the uniformity, morphology and electrochromic properties of electrodeposited poly (3, 4-ethylenedioxythiophene) film | |
Alesanco et al. | Consecutive anchoring of symmetric viologens: Electrochromic devices providing colorless to neutral-color switching | |
Zhang et al. | A facile preparation of SiO 2/PEDOT core/shell nanoparticle composite film for electrochromic device | |
Lin et al. | Comparisons of the electrochromic properties of poly (hydroxymethyl 3, 4-ethylenedioxythiophene) and poly (3, 4-ethylenedioxythiophene) thin films and the photoelectrochromic devices using these thin films | |
Lu et al. | Stepwise enhancement on optoelectronic performances of polyselenophene via electropolymerization of mono-, bi-, and tri-selenophene | |
Zhang et al. | Effects of indium-doped tin oxide film on electrochromic properties under lithium ion guidance | |
Feng et al. | Polyoxometalate/poly (3, 4-ethylenedioxythiophene) nanocomposites enabling visualization of energy storage status in multicolor electrochromic supercapacitors | |
Turkoglu et al. | Electropolymerization, spectroelectrochemistry and electrochromic properties of cross-conjugated and conjugated selenophenothiophenes with thiophene bridge | |
Baray-Calderón et al. | Enhanced performance of poly (3-hexylthiophene)-based electrochromic devices by adding a mesoporous TiO2 layer | |
Zhuang et al. | Solvent-induced lengthened conjugated chains in electrochromic PEDOT for enhanced optical modulation |