Hegde et al., 2022 - Google Patents
Simultaneous measurement of pressure and temperature in a supersonic ejector using FBG sensorsHegde et al., 2022
- Document ID
- 10596025911953761633
- Author
- Hegde G
- Himakar B
- Rao S
- Hegde G
- Asokan S
- Publication year
- Publication venue
- Measurement Science and Technology
External Links
Snippet
In this work, we have demonstrated the use of fiber Bragg grating (FBG) sensors for simultaneous measurement of wall static pressure and temperature in a supersonic ejector. Supersonic ejectors are ground-based high-speed aerodynamic test facilities characterized …
- 238000005259 measurement 0 title abstract description 28
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmission, scattering or fluorescence in optical fibres
- G01K11/3206—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmission, scattering or fluorescence in optical fibres at discrete locations in the fibre, e.g. by means of Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K5/00—Measuring temperature based on the expansion or contraction of a material
- G01K5/48—Measuring temperature based on the expansion or contraction of a material the material being a solid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/12—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency
- G01K11/125—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using change of colour or translucency using change in reflectance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L11/00—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L9/00—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material by electric or magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical means
- G01B11/16—Measuring arrangements characterised by the use of optical means for measuring the deformation in a solid, e.g. optical strain gauge
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hegde et al. | Simultaneous measurement of pressure and temperature in a supersonic ejector using FBG sensors | |
Zhu et al. | Progress toward sapphire optical fiber sensors for high-temperature applications | |
Lawson et al. | Development and application of optical fibre strain and pressure sensors for in-flight measurements | |
Hegde et al. | Temperature compensated diaphragm based Fiber Bragg Grating (FBG) sensor for high pressure measurement for space applications | |
Zelan et al. | Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations | |
Heckmeier et al. | Development of unsteady multi-hole pressure probes based on fiber-optic pressure sensors | |
Yang et al. | Vibration resistance FBG temperature sensor fabrication and its application in the motor for hydraulic pump | |
Ge et al. | MEMS pressure sensor based on optical Fabry–Perot interference | |
Tian et al. | An optical fiber Fabry–Pérot micro-pressure sensor based on beam-membrane structure | |
Polz et al. | Total temperature measurement of fast air streams with fiber-optic Bragg grating sensors | |
Qiu et al. | Fiber optic sensing technologies potentially applicable for hypersonic wind tunnel harsh environments | |
Cardoso et al. | A simple optical sensor based on an in-line Mach–Zehnder interferometer for monitoring single-and two-phase flows in pipelines | |
Qiu et al. | Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry | |
Zhu et al. | Distributed fiber-optic pressure sensor based on Bourdon tubes metered by optical frequency-domain reflectometry | |
Holmes et al. | Miniaturization of Bragg-multiplexed membrane transducers | |
Pevec et al. | Miniature fiber-optic Pitot tube sensor | |
Zhu et al. | A fluidic-based high-pressure sensor interrogated by microwave Fabry–Pérot interferometry | |
Ullah et al. | Design and development of an economical temperature compensated bidirectional fiber Bragg grating flow sensor | |
Peng et al. | Self-compensating fiber optic flow sensor system and its field applications | |
Bonham et al. | Stagnation temperature measurement using thin-film platinum resistance sensors | |
Fang et al. | MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application | |
Prasad et al. | Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel | |
Yang et al. | An intensity modulation based fiber-optic loop sensor for high sensitivity temperature measurement | |
Polz et al. | Miniaturized total temperature probe based on fibre Bragg gratings | |
Amos et al. | Theoretical design and analysis of a sensing system for high pressure and temperature measurement in subsea underwater applications |