Nothing Special   »   [go: up one dir, main page]

Diao et al., 2022 - Google Patents

Overviews of dielectric energy storage materials and methods to improve energy storage density

Diao et al., 2022

Document ID
10580199482105830556
Author
Diao C
Wang H
Wang B
He Y
Hou Y
Zheng H
Publication year
Publication venue
Journal of Materials Science: Materials in Electronics

External Links

Snippet

Due to high power density, fast charge/discharge speed, and high reliability, dielectric capacitors are widely used in pulsed power systems and power electronic systems. However, compared with other energy storage devices such as batteries and …
Continue reading at link.springer.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L41/00Piezo-electric devices in general; Electrostrictive devices in general; Magnetostrictive devices in general; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L41/16Selection of materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tatalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/13Ultracapacitors, supercapacitors, double-layer capacitors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • H01F1/0081Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products

Similar Documents

Publication Publication Date Title
Sun et al. Progress, outlook, and challenges in lead‐free energy‐storage ferroelectrics
Zou et al. Recent advances in lead-free dielectric materials for energy storage
Yao et al. Homogeneous/inhomogeneous‐structured dielectrics and their energy‐storage performances
Chen et al. Achieving high-energy storage performance in 0.67 Bi1-xSmxFeO3-0.33 BaTiO3 lead-free relaxor ferroelectric ceramics
Yuan et al. Ceramic-based dielectrics for electrostatic energy storage applications: Fundamental aspects, recent progress, and remaining challenges
Diao et al. Overviews of dielectric energy storage materials and methods to improve energy storage density
Dai et al. Effective strategy to achieve excellent energy storage properties in lead-free BaTiO3-based bulk ceramics
Yang et al. Novel BaTiO3-based, Ag/Pd-compatible lead-free relaxors with superior energy storage performance
Wang et al. Colossal permittivity materials as superior dielectrics for diverse applications
Qin et al. High energy storage and thermal stability under low electric field in Bi0. 5Na0. 5TiO3-modified BaTiO3-Bi (Zn0. 25Ta0. 5) O3 ceramics
Zhang et al. High energy storage capability of perovskite relaxor ferroelectrics via hierarchical optimization
Zheng et al. Enhanced energy storage properties in La (Mg1/2Ti1/2) O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range
Sun et al. Large energy density, excellent thermal stability, and high cycling endurance of lead-free BaZr0. 2Ti0. 8O3 film capacitors
He et al. Dielectric stability and energy-storage performance of BNT-based relaxor ferroelectrics through Nb5+ and its excess modification
Balaraman et al. Inorganic dielectric materials for energy storage applications: a review
Zhang et al. Perovskite Sr1–x (Na0. 5Bi0. 5) x Ti0. 99Mn0. 01O3 Thin Films with Defect Dipoles for High Energy-Storage and Electrocaloric Performance
Liu et al. Achieving high energy storage density and efficiency simultaneously in Sr (Nb0. 5Al0. 5) O3 modified BiFeO3 based lead-free ceramics
Xu et al. Tuning the microstructure of BaTiO3@ SiO2 core-shell nanoparticles for high energy storage composite ceramics
Jiao et al. Energy storage performance of 0.55 Bi0. 5Na0. 5TiO3-0.45 SrTiO3 ceramics doped with lanthanide elements (Ln= La, Nd, Dy, Sm) using a viscous polymer processing route
Lin et al. Energy storage performance in polymer dielectrics by introducing 2D SrBi4Ti4O15 nanosheets
Zhu et al. Fantastic energy storage performances and excellent stability in BiFeO3–SrTiO3-based relaxor ferroelectric ceramics
Wu et al. Achieving ultrabroad temperature stability range with high dielectric constant and superior energy storage density in KNN–based ceramic capacitors
Sharma et al. Large energy storage density performance of epitaxial BCT/BZT heterostructures via interface engineering
Wang et al. An alternative way to design excellent energy-storage properties in Na0. 5Bi0. 5TiO3-based lead-free system by constructing relaxor dielectric composites
Jain et al. Grain size engineered Ba0. 9Sr0. 1Ti0. 9Hf0. 1O3‐Na0. 5Bi0. 5TiO3 relaxor ceramics with improved energy storage performance