Lin et al., 2022 - Google Patents
NGSO satellites beam hopping strategy based on load balancing and interference avoidance for coexistence with GSO systemsLin et al., 2022
- Document ID
- 10549971640730607882
- Author
- Lin Z
- Ni Z
- Kuang L
- Jiang C
- Huang Z
- Publication year
- Publication venue
- IEEE Communications Letters
External Links
Snippet
Non-geostationary orbit (NGSO) satellite communication system plays an important role in achieving seamless global coverage and addressing the digital divide. The uneven distribution of terrestrial users and the high mobility of NGSO satellites put forward higher …
- 210000004027 cells 0 abstract description 54
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18513—Transmission in a satellite or space-based system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18519—Operations control, administration or maintenance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18539—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
- H04B7/18543—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for adaptation of transmission parameters, e.g. power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18523—Satellite systems for providing broadcast service to terrestrial stations, i.e. broadcast satellite service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18515—Transmission equipment in satellites or space-based relays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18578—Satellite systems for providing broadband data service to individual earth stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/204—Multiple access
- H04B7/2041—Spot beam multiple access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2621—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2575—Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cocco et al. | Radio resource management optimization of flexible satellite payloads for DVB-S2 systems | |
Perez-Neira et al. | Signal processing for high-throughput satellites: Challenges in new interference-limited scenarios | |
Alsharoa et al. | Improvement of the global connectivity using integrated satellite-airborne-terrestrial networks with resource optimization | |
Lin et al. | Multi-satellite beam hopping based on load balancing and interference avoidance for NGSO satellite communication systems | |
Yin et al. | Rate-splitting multiple access for satellite-terrestrial integrated networks: Benefits of coordination and cooperation | |
Tang et al. | Resource allocation for LEO beam-hopping satellites in a spectrum sharing scenario | |
Lin et al. | NGSO satellites beam hopping strategy based on load balancing and interference avoidance for coexistence with GSO systems | |
Lei et al. | Multibeam satellite frequency/time duality study and capacity optimization | |
Zhang et al. | Joint precoding schemes for flexible resource allocation in high throughput satellite systems based on beam hopping | |
Ge et al. | Joint user pairing and power allocation for NOMA-based GEO and LEO satellite network | |
Zhang et al. | System-level evaluation of beam hopping in NR-based LEO satellite communication system | |
Sharma et al. | System modeling and design aspects of next generation high throughput satellites | |
Zhong et al. | Joint transmit power and bandwidth allocation for cognitive satellite network based on bargaining game theory | |
Van Chien et al. | User scheduling and power allocation for precoded multi-beam high throughput satellite systems with individual quality of service constraints | |
Serrano-Velarde et al. | Novel dimensioning method for high-throughput satellites: Forward link | |
Wang et al. | Dynamic downlink resource allocation based on imperfect estimation in LEO-HAP cognitive system | |
Dimitrov et al. | Radio resource management techniques for high throughput satellite communication systems | |
Khammassi et al. | Precoding for high throughput satellite communication systems: A survey | |
Gu et al. | Cooperative spectrum sharing in a co-existing LEO-GEO satellite system | |
Zhang et al. | A unified NOMA framework in beam-hopping satellite communication systems | |
Nguyen-Kha et al. | Leo-to-user assignment and resource allocation for uplink transmit power minimization | |
Zhu et al. | Distributed resource optimization for NOMA transmission in beamforming SATCOM | |
Guidotti et al. | Feeder link precoding for future broadcasting services | |
Honnaiah et al. | Demand-Driven Beam Densification in Multibeam Satellite Communication Systems | |
Cocco et al. | Radio resource management strategies for DVB-S2 systems operated with flexible satellite payloads |