Kash et al., 1998 - Google Patents
Non-invasive backside failure analysis of integrated circuits by time-dependent light emission: Picosecond imaging circuit analysisKash et al., 1998
- Document ID
- 10392065500582986381
- Author
- Kash J
- Tsang J
- Knebel D
- Vallett D
- Publication year
- Publication venue
- International Symposium for Testing and Failure Analysis
External Links
Snippet
A noninvasive backside probe of integrated circuits has been developed. This new probe can diagnose at-speed failures, stuck faults, and other defects. Because it is a highly parallel imaging technique, faults may be isolated which are difficult to locate by other methods. This …
- 238000004458 analytical method 0 title abstract description 8
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/308—Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
- G01R31/311—Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/319—Tester hardware, i.e. output processing circuit
- G01R31/31917—Stimuli generation or application of test patterns to the device under test [DUT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/305—Contactless testing using electron beams
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3183—Generation of test inputs, e.g. test vectors, patterns or sequence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2855—Environmental, reliability or burn-in testing
- G01R31/286—External aspects, e.g. related to chambers, contacting devices or handlers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2607—Circuits therefor
- G01R31/2621—Circuits therefor for testing field effect transistors, i.e. FET's
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2853—Electrical testing of internal connections or -isolation, e.g. latch-up or chip-to-lead connections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/30—Marginal testing, e.g. varying supply voltage
- G01R31/3004—Current or voltage test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31718—Logistic aspects, e.g. binning, selection, sorting of devices under test, tester/handler interaction networks, Test management software, e.g. software for test statistics or test evaluation, yield analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2832—Specific tests of electronic circuits not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/282—Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tsang et al. | Picosecond imaging circuit analysis | |
Kash et al. | Dynamic internal testing of CMOS circuits using hot luminescence | |
US5940545A (en) | Noninvasive optical method for measuring internal switching and other dynamic parameters of CMOS circuits | |
US7446550B2 (en) | Enhanced signal observability for circuit analysis | |
Stellari et al. | CMOS circuit testing via time-resolved luminescence measurements and simulations | |
Kash et al. | Non-invasive backside failure analysis of integrated circuits by time-dependent light emission: Picosecond imaging circuit analysis | |
Stellari et al. | Self-heating characterization of FinFET SOI devices using 2D time resolved emission measurements | |
Stellari et al. | High-speed CMOS circuit testing by 50 ps time-resolved luminescence measurements | |
Stellari et al. | Self-heating measurement of 14-nm FinFET SOI transistors using 2-D time-resolved emission | |
Tsang et al. | Time-resolved optical characterization of electrical activity in integrated circuits | |
Tosi et al. | Hot-carrier photoemission in scaled CMOS technologies: a challenge for emission based testing and diagnostics | |
US20050024057A1 (en) | Methods of using measured time resolved photon emission data and simulated time resolved photon emission data for fault localization | |
Snyder et al. | Novel self-stressing test structures for realistic high-frequency reliability characterization | |
Bodoh et al. | Defect localization using time-resolved photon emission on SOI devices that fail scan tests | |
US20030146768A1 (en) | Noninvasive optical method and system for inspecting or testing CMOS circuits | |
Stellari et al. | Circuit voltage probe based on time-integrated measurements of optical emission from leakage current | |
Stellari et al. | Broken scan chain diagnostics based on time-integrated and time-dependent emission measurements | |
Stellari et al. | Time-resolved optical measurements from 0.13 μm CMOS technology microprocessor using a Superconducting Single-Photon Detector | |
Lo et al. | Comparison of laser and emission based optical probe techniques | |
Stellari et al. | Switching time extraction of CMOS gates using time-resolved emission (TRE) | |
Stellari et al. | A Superconducting nanowire Single-Photon Detector (SnSPD) system for ultra low voltage Time-Resolved Emission (TRE) measurements of VLSI circuits | |
Tosi et al. | Hot-carrier luminescence: comparison of different CMOS technologies | |
US20050174248A1 (en) | Apparatus and method for determining voltage using optical observation | |
JP2006522939A (en) | Calibration system and method for inspection apparatus using photoemission of device | |
Stellari et al. | 1D and 2D Time-Resolved Emission Measurements of Circuits Fabricated in 14 nm Technology Node |