Zhong, 2024 - Google Patents
Synthesis and characterization of tyramine and maleimide functionalized dextranZhong, 2024
View PDF- Document ID
- 10365493113748419287
- Author
- Zhong L
- Publication year
- Publication venue
- ENZYME RESPONSIVE DELIVERY OF ENGINEERED ANTIBODY FRAGMENTS
External Links
Snippet
The development of novel functional hydrogel scaffolds for efficient biologicals delivery and tissue engineering has been a major research interest over the past years. Dextran-based hydrogels are naturally biodegradable and can serve as delivery vehicles for many …
- DZGWFCGJZKJUFP-UHFFFAOYSA-N Tyramine   NCCC1=CC=C(O)C=C1 0 title abstract description 94
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0045—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Galacturonans, e.g. methyl ester of (alpha-1,4)-linked D-galacturonic acid units, i.e. pectin, or hydrolysis product of methyl ester of alpha-1,4-linked D-galacturonic acid units, i.e. pectinic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0009—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/48—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
- A61K47/48169—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the modifying agent being an organic macromolecular compound, i.e. an oligomeric, polymeric, dendrimeric molecule
- A61K47/4823—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the modifying agent being an organic macromolecular compound, i.e. an oligomeric, polymeric, dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative, e.g. starch, chitosan, chitin, cellulose, pectin, cyclodextrin with the pharmacologically active agent being covalently linked to the external surface of the ring structure, a bacterial polysaccharide or oligosaccharide antigen, a glycosaminoglycan
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/48—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
- A61K47/48169—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the modifying agent being an organic macromolecular compound, i.e. an oligomeric, polymeric, dendrimeric molecule
- A61K47/48192—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the modifying agent being an organic macromolecular compound, i.e. an oligomeric, polymeric, dendrimeric molecule the organic macromolecular compound has been obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas, polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions or lattices by other methods than by solution, emulsion or suspension polymerisation techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L89/00—Compositions of proteins; Compositions of derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule form cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/333—Polymers modified by chemical after-treatment with organic compounds containing nitrogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
- A61K47/30—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/24—Homopolymers or copolymers of amides or imides
- C08L33/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering | |
Nie et al. | Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor delivery systems | |
US20230348675A1 (en) | Alginate hydrogel compositions | |
Martin et al. | Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels | |
Guaresti et al. | In situ cross–linked chitosan hydrogels via Michael addition reaction based on water–soluble thiol–maleimide precursors | |
Jin et al. | Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering | |
Jin et al. | Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates | |
WO2004022603A1 (en) | Hyaluronic acid derivatives and processes for preparing the same | |
Li et al. | In-situ forming biodegradable glycol chitosan-based hydrogels: synthesis, characterization, and chondrocyte culture | |
US20230279186A1 (en) | Hydrogels Based On Functionalized Polysaccharides | |
Stewart et al. | Synthetic hydrogels formed by thiol–ene crosslinking of vinyl sulfone-functional poly (methyl vinyl ether-alt-maleic acid) with α, ω-dithio-polyethyleneglycol | |
ES2627486T3 (en) | Silylated biomolecules | |
WO2008083542A1 (en) | Multiple modified derivatives of gelatin and crosslinked material thereof | |
CN111704729B (en) | Hydrogel cell scaffold based on natural polymer and adjustable in strength and gelling time | |
Wei et al. | Injectable poly (γ-glutamic acid)-based biodegradable hydrogels with tunable gelation rate and mechanical strength | |
Wu et al. | From macro to micro to nano: the development of a novel lysine based hydrogel platform and enzyme triggered self-assembly of macro hydrogel into nanogel | |
EP3021872B1 (en) | Polymer suitable for use in cell culture | |
Zhong | Synthesis and characterization of tyramine and maleimide functionalized dextran | |
David et al. | MICRO-/NANOSTRUCTURED POLYMERIC MATERIALS: POLY (∊-CAPROLACTONE) CROSSLINKED COLLAGEN SPONGES. | |
US12109307B2 (en) | Compositions and methods for controlled release of target agent | |
Chen et al. | In situ forming hydrogels based on oxidized hydroxypropyl cellulose and Jeffamines | |
Fürst et al. | Entirely S-protected thiolated hydroxyethylcellulose: Design of a dual cross-linking approach for hydrogels | |
Beeren et al. | Well-Defined Synthetic Copolymers with Pendant Aldehydes Form Biocompatible Strain-Stiffening Hydrogels and Enable Competitive Ligand Displacement | |
Zhong et al. | Bioactive Hydrogels Based on Tyramine and Maleimide Functionalized Dextran for Tissue Engineering Applications | |
EP3295933A1 (en) | Hydrogels based on functionalized polysaccharides |