Tinnathi et al., 2021 - Google Patents
An efficient copy move forgery detection using adaptive watershed segmentation with AGSO and hybrid feature extractionTinnathi et al., 2021
- Document ID
- 10360830953384058991
- Author
- Tinnathi S
- Sudhavani G
- Publication year
- Publication venue
- Journal of Visual Communication and Image Representation
External Links
Snippet
Copy-move forgery detection (CMFD) is the process of determining the presence of copied areas in an image. CMFD approaches are mainly classified into two groups: keypoint-based and block-based techniques. In this paper, a new CMFD approach is proposed on the basis …
- 238000001514 detection method 0 title abstract description 48
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/52—Extraction of features or characteristics of the image by deriving mathematical or geometrical properties from the whole image
- G06K9/527—Scale-space domain transformation, e.g. with wavelet analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4671—Extracting features based on salient regional features, e.g. Scale Invariant Feature Transform [SIFT] keypoints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4604—Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6261—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
- G06F17/30799—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/0021—Image watermarking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tinnathi et al. | An efficient copy move forgery detection using adaptive watershed segmentation with AGSO and hybrid feature extraction | |
Elaskily et al. | A novel deep learning framework for copy-moveforgery detection in images | |
Yang et al. | A copy-move forgery detection method based on CMFD-SIFT | |
Bi et al. | Fast reflective offset-guided searching method for copy-move forgery detection | |
Jaiprakash et al. | Low dimensional DCT and DWT feature based model for detection of image splicing and copy-move forgery | |
Hegazi et al. | An improved copy-move forgery detection based on density-based clustering and guaranteed outlier removal | |
Tang et al. | Image hashing with color vector angle | |
Gao et al. | Robust detection of median filtering based on combined features of difference image | |
Dua et al. | Detection and localization of forgery using statistics of DCT and Fourier components | |
Simon et al. | Review of texture descriptors for texture classification | |
Srinivasa Rao et al. | Image authentication using Local Binary Pattern on the Low frequency components | |
Jain et al. | An efficient image forgery detection using biorthogonal wavelet transform and improved relevance vector machine | |
Tahaoglu et al. | Improved copy move forgery detection method via L* a* b* color space and enhanced localization technique | |
Chen et al. | Image splicing localization using residual image and residual-based fully convolutional network | |
Kaur et al. | A passive approach for the detection of splicing forgery in digital images | |
Roy et al. | Digital image forensics | |
Gani et al. | Copy move forgery detection using DCT, PatchMatch and cellular automata | |
Dixit et al. | Region duplication detection in digital images based on Centroid Linkage Clustering of key–points and graph similarity matching | |
Kaur et al. | Efficient hybrid passive method for the detection and localization of copy-moveand spliced images | |
Sedik et al. | AI-enabled digital forgery analysis and crucial interactions monitoring in smart communities | |
Sushir et al. | Enhanced blind image forgery detection using an accurate deep learning based hybrid DCCAE and ADFC | |
Alhaidery et al. | A passive image forensic scheme based on an adaptive and hybrid techniques | |
Das et al. | Image splicing detection with principal component analysis generated low-dimensional homogeneous feature set based on local binary pattern and support vector machine | |
Diaa | A Deep Learning Model to Inspect Image Forgery on SURF Keypoints of SLIC Segmented Regions | |
Dixit et al. | Copy-move image forgery detection a review |