Nothing Special   »   [go: up one dir, main page]

Houdebine et al., 2016 - Google Patents

An 85-GHz fully integrated all digital fractional frequency synthesizer for e-band backhaul and radar applications in 55-nm BiCMOS

Houdebine et al., 2016

Document ID
10035671314927675766
Author
Houdebine M
Chataigner E
Boulestin R
Grundrich C
Thevenet D
Pruvost S
Sherry H
Colmagro F
Bailleul F
Dedieu S
Publication year
Publication venue
ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference

External Links

Snippet

This paper presents a fully integrated and spur-free fractional frequency synthesizer based on a low noise 42.5-GHz SiGe quad-core VCO locked on a standard 40-MHz crystal unit. Consequently, optimal SNR is obtained for narrow bandwidth. Reference spurs are below …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/22Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B1/00Details
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/24Automatic control of frequency or phase; Synchronisation using a reference signal directly applied to the generator
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezo-electric resonator
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B19/00Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B21/00Generation of oscillations by combining unmodulated signals of different frequencies
    • H03B21/01Generation of oscillations by combining unmodulated signals of different frequencies by beating unmodulated signals of different frequencies

Similar Documents

Publication Publication Date Title
Razavi Challenges in the design of frequency synthesizers for wireless applications
Murphy et al. A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15. 3c transceiver
Khana MICROWAVE OSCILLATORS: THE STATE OF THE TECHNOLOGY.
Floyd A 16–18.8-GHz sub-integer-N frequency synthesizer for 60-GHz transceivers
Pohl et al. A low-power wideband transmitter front-end chip for 80 GHz FMCW radar systems with integrated 23 GHz downconverter VCO
US20120268215A1 (en) Circuit arrangement for generation of radio frequency output signals which form a broadband frequency ramp
Nakamura et al. A push-push VCO with 13.9-GHz wide tuning range using loop-ground transmission line for full-band 60-GHz transceiver
Vovnoboy et al. A fully integrated 75–83 GHz FMCW synthesizer for automotive radar applications with− 97 dBc/Hz phase noise at 1 MHz offset and 100 GHz/mSec maximal chirp rate
Akhmetov et al. 2.4-2.5 GHz fractional-n frequency synthesizer with integrated VCO in 0.18 um CMOS for RFID Systems
Chen et al. A 22.5–31.2-GHz continuously tuning frequency synthesizer with 8.7-GHz chirp for FMCW applications
Yu et al. A Single-Chip 125-MHz to 32-GHz Signal Source in 0.18-$\mu $ m SiGe BiCMOS
Kalia et al. A sub-100 fs RMS jitter 20 GHz fractional-N analog PLL with a BAW resonator based on-chip 2.5 GHz reference
Lee et al. A 28.5–32-GHz fast settling multichannel PLL synthesizer for 60-GHz WPAN radio
US11177818B2 (en) Non-quadrature local oscillator mixing and multi-decade coverage
Jahn et al. A 122-GHz SiGe-based signal-generation chip employing a fundamental-wave oscillator with capacitive feedback frequency-enhancement
Houdebine et al. An 85-GHz fully integrated all digital fractional frequency synthesizer for e-band backhaul and radar applications in 55-nm BiCMOS
Musa et al. A 58–63.6 GHz quadrature PLL frequency synthesizer in 65nm CMOS
Volkaerts et al. A 120GHz quadrature frequency generator with 16.2 GHz tuning range in 45nm CMOS
Shen et al. A 24 GHz Self-Calibrated All-Digital FMCW Synthesizer With 0.01% RMS Frequency Error Under 3.2 GHz Chirp Bandwidth and 320 MHz/µs Chirp Slope
US9490830B2 (en) Method and apparatus for synthesis of wideband low phase noise radio frequency signals
Catli et al. A 60 GHz CMOS combined mm-wave VCO/divider with 10-GHz tuning range
Herzel et al. Design of a low-jitter wideband frequency synthesizer for 802.11 ad wireless OFDM systems using a frequency sixtupler
Tang et al. D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology
Chenakin et al. Current state and development trends of microwave frequency synthesizers
Herzel et al. An integrated 8-12 GHz fractional-N frequency synthesizer in SiGe BiCMOS for satellite communications