Kamath et al., 2012 - Google Patents
A wide output range, mismatch tolerant Sigma Delta DAC for digital PLL in 90nm CMOSKamath et al., 2012
- Document ID
- 994566366514115513
- Author
- Kamath A
- Chattopadhyay B
- Publication year
- Publication venue
- 2012 IEEE International Symposium on Circuits and Systems (ISCAS)
External Links
Snippet
A mismatch-tolerant current-mode Sigma Delta (ΣΔ) Digital to Analog Converter (DAC) is presented here. The current mode DAC is designed such that the outputs of any two adjacent current elements can be progressively brought out for separate ΣΔ operation. This …
- 229920000729 poly(L-lysine) polymer 0 title abstract description 6
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0634—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
- H03M1/0656—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain
- H03M1/066—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the time domain by continuously permuting the elements used, i.e. dynamic element matching
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/68—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
- H03M1/682—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type
- H03M1/685—Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits both converters being of the unary decoded type the quantisation value generators of both converters being arranged in a common two-dimensional array
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/80—Simultaneous conversion using weighted impedances
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/36—Analogue value compared with reference values simultaneously only, i.e. parallel type
- H03M1/361—Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/662—Multiplexed conversion systems
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/14—Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same information or similar information or a subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same information or similar information or a subset of information is represented by a different sequence or number of digits
- H03M7/14—Conversion to or from non-weighted codes
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kratyuk et al. | A digital PLL with a stochastic time-to-digital converter | |
KR101109198B1 (en) | All-digital clock data recovery device and transceiver implemented thereof | |
US8553827B2 (en) | ADC-based mixed-mode digital phase-locked loop | |
US8907708B2 (en) | Digitally controlled oscillator with thermometer sigma delta encoded frequency control word | |
US6424283B2 (en) | Segmented high speed and high resolution digital-to-analog converter | |
CN106341134B (en) | Digital-to-analog converter with local interleaving and resampling | |
US8847806B2 (en) | Digital to analog converter comprising mixer | |
US7688236B2 (en) | Integrated circuit comprising a plurality of digital-to-analog converters, sigma-delta modulator circuit, and method of calibrating a plurality of multibit digital-to-analog converters | |
TWI387207B (en) | Mixed-mode pll and method for reducing fractional spur of an adpll | |
US9762252B2 (en) | Digitally controlled oscillator | |
US20120068865A1 (en) | Fast data weighted average circuit and method | |
EP3703261A1 (en) | Current controlled mdac for time-interleaved adcs and related methods | |
US7719369B2 (en) | Sigma delta digital to analog converter with wide output range and improved linearity | |
Ghaedrahmati et al. | A 38.6-fJ/conv.-step inverter-based continuous-time bandpass ΔΣ ADC in 28 nm using asynchronous SAR quantizer | |
Kamath et al. | A wide output range, mismatch tolerant Sigma Delta DAC for digital PLL in 90nm CMOS | |
Li et al. | A survey of high-speed high-resolution current steering DACs | |
WO2011002944A1 (en) | Adc-based mixed-mode digital phase-locked loop | |
US20050093729A1 (en) | Guaranteed monotonic digital to analog converter | |
EP3703262A1 (en) | Mdac based time-interleaved analog-to-digital converters and related methods | |
EP3703260A2 (en) | Digital calibration systems and methods for multi-stage analog-to-digital converters | |
Chang et al. | A 5 GHz Fractional-$ N $ ADC-Based Digital Phase-Locked Loops With− 243.8 dB FOM | |
El-Halwagy et al. | A programmable 8-bit, 10MHz BW, 6.8 mW, 200MSample/sec, 70dB SNDR VCO-based ADC using SC feedback for VCO linearization | |
Balasubramanian et al. | Architectural trends in current-steering digital-to-analog converters | |
Zhao et al. | A− 89-dBc IMD3 DAC sub-system in a 465-MHz BW CT delta-sigma ADC using a power and area efficient calibration technique | |
US7786914B2 (en) | Time-interleaved delta-sigma modulator |