Pan et al., 2018 - Google Patents
Suppressing the voltage decay and enhancing the electrochemical performance of Li1. 2Mn0. 54Co0. 13Ni0. 13O2 by multifunctional Nb2O5 coatingPan et al., 2018
View PDF- Document ID
- 991540293717138212
- Author
- Pan W
- Peng W
- Yan G
- Guo H
- Wang Z
- Li X
- Gui W
- Wang J
- Chen N
- Publication year
- Publication venue
- Energy Technology
External Links
Snippet
This study focuses on suppressing the voltage decay and improving the electrochemical performance of Li‐rich and manganese‐based (LRM) material by Nb2O5 coating, which is realized by an effective soft‐chemical route using a mixture of ethanol and water as co …
- 239000011248 coating agent 0 title abstract description 20
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage for electromobility
- Y02T10/7005—Batteries
- Y02T10/7011—Lithium ion battery
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2/00—Constructional details or processes of manufacture of the non-active parts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pan et al. | Suppressing the voltage decay and enhancing the electrochemical performance of Li1. 2Mn0. 54Co0. 13Ni0. 13O2 by multifunctional Nb2O5 coating | |
Yang et al. | Suppressing voltage fading of Li‐rich oxide cathode via building a well‐protected and partially‐protonated surface by polyacrylic acid binder for cycle‐stable Li‐ion batteries | |
Zha et al. | Surface modification of the LiNi0. 8Co0. 1Mn0. 1O2 cathode material by coating with FePO4 with a yolk–shell structure for improved electrochemical performance | |
Zhao et al. | Surface structural transition induced by gradient polyanion‐doping in Li‐rich layered oxides: implications for enhanced electrochemical performance | |
Bresser et al. | Carbon coated ZnFe2O4 nanoparticles for advanced lithium‐ion anodes | |
Wang et al. | Combining fast Li-ion battery cycling with large volumetric energy density: grain boundary induced high electronic and ionic conductivity in Li4Ti5O12 spheres of densely packed nanocrystallites | |
Xiao et al. | Effect of MgO and TiO2 coating on the electrochemical performance of Li‐rich cathode materials for lithium‐ion batteries | |
Shen et al. | Advanced Energy‐Storage Architectures Composed of Spinel Lithium Metal Oxide Nanocrystal on Carbon Textiles | |
Zhang et al. | Enhancing the high rate capability and cycling stability of LiMn2O4 by coating of solid-state electrolyte LiNbO3 | |
Mao et al. | Cross‐Linked Sodium Alginate as A Multifunctional Binder to Achieve High‐Rate and Long‐Cycle Stability for Sodium‐Ion Batteries | |
Li et al. | ZnO interface modified LiNi0. 6Co0. 2Mn0. 2O2 toward boosting lithium storage | |
Liang et al. | Sur‐/Interface Engineering of Hierarchical LiNi0. 6Mn0. 2Co0. 2O2@ LiCoPO4@ Graphene Architectures as Promising High‐Voltage Cathodes toward Advanced Li‐Ion Batteries | |
Xu et al. | Stabilizing the structure of nickel‐rich lithiated oxides via Cr doping as cathode with boosted high‐voltage/temperature cycling performance for Li‐ion battery | |
Wang et al. | Revealing Rate Limitations in Nanocrystalline Li4Ti5O12 Anodes for High‐Power Lithium Ion Batteries | |
Liu et al. | Grain boundaries contribute to highly efficient lithium‐ion transport in advanced LiNi0. 8Co0. 15Al0. 05O2 secondary sphere with compact structure | |
Liu et al. | Surficial structure retention mechanism for LiNi0. 8Co0. 15Al0. 05O2 in a full gradient cathode | |
Choi et al. | Effect of Na2SO4 Coating layer on Nickel‐Rich Li (NixCoyMnz) O2 Cathode Materials for Lithium‐Ion Batteries | |
Heo et al. | Enhanced electrochemical performance of ionic-conductor coated Li [Ni0. 7Co0. 15Mn0. 15] O2 | |
Song et al. | Interfacial film Li1. 3Al0. 3Ti1. 7PO4-coated LiNi0. 6Co0. 2Mn0. 2O2 for the long cycle stability of lithium-ion batteries | |
Lyu et al. | Surface structure evolution of cathode materials for Li-ion batteries | |
Ren et al. | Enabling high‐performance 4.6 V LiCoO2 in a wide temperature range via a synergetic strategy | |
He et al. | Surface Li+/Ni2+ Antisite Defects Construction for Achieving High‐Voltage Stable Single‐Crystal Ni‐Rich Cathode by Anion/Cation Co‐Doping | |
Yiğitalp et al. | Nafion‐coated LiNi0. 80Co0. 15Al0. 05O2 (NCA) cathode preparation and its influence on the Li‐ion battery cycle performance | |
Hamad et al. | Synthesis of Layered LiMn1/3Ni1/3Co1/3O2 Oxides for Lithium‐Ion Batteries using Biomass‐Derived Glycerol as Solvent | |
Ren et al. | Enhancing electrochemical performance of nickel-rich NCM cathode material through Nb modification across a wide temperature range |