Nothing Special   »   [go: up one dir, main page]

Link et al., 2021 - Google Patents

An a1 mode resonator at 12 ghz using 160nm lithium niobate suspended thin film

Link et al., 2021

Document ID
9861926145211991194
Author
Link S
Lu R
Yang Y
Hassanien A
Gong S
Publication year
Publication venue
2021 IEEE International Ultrasonics Symposium (IUS)

External Links

Snippet

This paper demonstrates a 160 nm thick first-and third-order antisymmetric mode Lithium Niobate resonator. The presented device maintains feature sizes on the order of micrometers by thinning the piezoelectric resulting in a first-order mode at 11.77 GHz …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezo-electric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezo-electric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezo-electric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezo-electric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of micro-electro-mechanical resonators
    • H03H2009/02488Vibration modes
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of micro-electro-mechanical resonators
    • H03H9/02338Suspension means
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/562Monolithic crystal filters comprising a ceramic piezoelectric layer
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezo-electric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02582Characteristics of substrate, e.g. cutting angles of diamond substrates
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0023Balance-unbalance or balance-balance networks
    • H03H9/0095Balance-unbalance or balance-balance networks using bulk acoustic wave devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters

Similar Documents

Publication Publication Date Title
Link et al. An a1 mode resonator at 12 ghz using 160nm lithium niobate suspended thin film
US7463117B2 (en) Film bulk acoustic-wave resonator (FBAR), filter implemented by FBARs and method for manufacturing FBAR
JP4756461B2 (en) Aluminum nitride thin film and piezoelectric thin film resonator using the same
Butaud et al. Innovative smart cut™ piezo on insulator (POI) substrates for 5G acoustic filters
US8673121B2 (en) Method of fabricating piezoelectric materials with opposite C-axis orientations
JP3940932B2 (en) Thin film piezoelectric resonator, thin film piezoelectric device and manufacturing method thereof
US20070284971A1 (en) Electronic device
JP4478910B2 (en) Piezoelectric thin film resonator
Bousquet et al. Single-mode high frequency LiNbO 3 film bulk acoustic resonator
US20170288636A1 (en) Temperature compensated acoustic resonator device having thin seed interlayer
Kramer et al. 57 GHz acoustic resonator with k 2 of 7.3% and q of 56 in thin-film lithium niobate
Park et al. High-overtone thin film ferroelectric AlScN-on-silicon composite resonators
Nam et al. A mm-wave trilayer AlN/ScAlN/AlN higher order mode FBAR
Wu et al. Exploring low-loss surface acoustic wave devices on heterogeneous substrates
Zhao et al. 15-ghz epitaxial aln fbars on sic substrates
Koohi et al. Reconfigurable radios employing ferroelectrics: Recent progress on reconfigurable RF acoustic devices based on thin-film ferroelectric barium strontium titanate
Reinhardt et al. Acoustic filters based on thin single crystal LiNbO 3 films: status and prospects
Fiagbenu et al. A K-Band Bulk Acoustic Wave Resonator Using Periodically Poled Al 0.72 Sc 0.28 N
Rassay et al. Acoustically coupled wideband RF filters with bandwidth reconfigurablity using ferroelectric aluminum scandium nitride film
Su et al. Lithium Niobate Thin Film Based A 1 Mode Resonators with Frequency up to 16 Ghz and Electromechanical Coupling Factor Near 35%
Yandrapalli et al. Toward band n78 shear bulk acoustic resonators using crystalline Y-cut lithium niobate films with spurious suppression
Kramer et al. Trilayer periodically poled piezoelectric film lithium niobate resonator
JP4186685B2 (en) Aluminum nitride thin film and piezoelectric thin film resonator using the same
Wu et al. Ultra-wideband MEMS filters using localized thinned 128° Y-cut thin-film lithium niobate
US20240007075A1 (en) Complementary switchable dual-mode bulk acoustic wave resonator and filter