Hasan et al., 2016 - Google Patents
Comparative analysis of vehicle detection in urban traffic environment using Haar cascaded classifiers and blob statisticsHasan et al., 2016
View PDF- Document ID
- 9774156138854846507
- Author
- Hasan Y
- Arif M
- Asif A
- Raza R
- Publication year
- Publication venue
- 2016 Future Technologies Conference (FTC)
External Links
Snippet
The applications of computer vision are widely used in traffic monitoring and surveillance. In traffic monitoring, detection of vehicles plays a significant role. Different attributes such as shape, color, size, pose, illumination, shadows, occlusion, background clutter, camera …
- 238000001514 detection method 0 title abstract description 56
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/20—Image acquisition
- G06K9/32—Aligning or centering of the image pick-up or image-field
- G06K9/3233—Determination of region of interest
- G06K9/3241—Recognising objects as potential recognition candidates based on visual cues, e.g. shape
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00771—Recognising scenes under surveillance, e.g. with Markovian modelling of scene activity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/00791—Recognising scenes perceived from the perspective of a land vehicle, e.g. recognising lanes, obstacles or traffic signs on road scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K2209/00—Indexing scheme relating to methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30781—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F17/30784—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
- G06F17/30799—Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rani | LittleYOLO-SPP: A delicate real-time vehicle detection algorithm | |
Sun et al. | Benchmark data and method for real-time people counting in cluttered scenes using depth sensors | |
Feris et al. | Large-scale vehicle detection, indexing, and search in urban surveillance videos | |
Huang et al. | Vehicle detection and inter-vehicle distance estimation using single-lens video camera on urban/suburb roads | |
Cui et al. | Vehicle localisation using a single camera | |
Romdhane et al. | An improved traffic signs recognition and tracking method for driver assistance system | |
Wali et al. | Comparative survey on traffic sign detection and recognition: a review | |
WO2012139228A1 (en) | Video-based detection of multiple object types under varying poses | |
Abbas et al. | A comprehensive review of vehicle detection using computer vision | |
Momin et al. | Vehicle detection and attribute based search of vehicles in video surveillance system | |
Shukla et al. | Moving object tracking of vehicle detection: a concise review | |
Van Pham et al. | Front-view car detection and counting with occlusion in dense traffic flow | |
Al-Ariny et al. | An efficient vehicle counting method using mask r-cnn | |
Yao et al. | Coupled multivehicle detection and classification with prior objectness measure | |
Hasan et al. | Comparative analysis of vehicle detection in urban traffic environment using Haar cascaded classifiers and blob statistics | |
Alshehri et al. | Unmanned aerial vehicle detection and tracking using image segmentation and Bayesian filtering | |
Nguyen et al. | Real-time pedestrian detection using a support vector machine and stixel information | |
Chen et al. | Vision-based traffic surveys in urban environments | |
Singh et al. | Smart traffic monitoring through real-time moving vehicle detection using deep learning via aerial images for consumer application | |
Qureshi et al. | Intelligent Traffic Surveillance through Multi-Label Semantic Segmentation and Filter-Based Tracking | |
Bourja et al. | Movits: Moroccan video intelligent transport system | |
Yang et al. | Feature fusion for vehicle detection and tracking with low-angle cameras | |
Choi et al. | Event classification for vehicle navigation system by regional optical flow analysis | |
Patil et al. | A Novel Method of Traffic Rule Compliance Detection Using Morphological Operations at Toll Booths | |
Ohn-Bar et al. | Can appearance patterns improve pedestrian detection? |