Nothing Special   »   [go: up one dir, main page]

Wang et al., 2018 - Google Patents

Electrochemically controlled solid electrolyte interphase layers enable superior Li–S batteries

Wang et al., 2018

View PDF
Document ID
9730840150421417851
Author
Wang Y
Lin C
Rao J
Gaskell K
Rubloff G
Lee S
Publication year
Publication venue
ACS applied materials & interfaces

External Links

Snippet

Lithium–sulfur (Li–S) batteries suffer from shuttle reactions during electrochemical cycling, which cause the loss of active material sulfur from sulfur–carbon cathodes, and simultaneously incur the corrosion and degradation of the lithium metal anode by forming …
Continue reading at drive.google.com (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/13Ultracapacitors, supercapacitors, double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2/00Constructional details or processes of manufacture of the non-active parts
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof

Similar Documents

Publication Publication Date Title
Wang et al. Electrochemically controlled solid electrolyte interphase layers enable superior Li–S batteries
Meyerson et al. Recent developments in dendrite-free lithium-metal deposition through tailoring of micro-and nanoscale artificial coatings
Zhang et al. Stable lithium metal anode enabled by a lithiophilic and electron/ion conductive framework
Liu et al. Alloy anodes for rechargeable alkali-metal batteries: progress and challenge
Hou et al. Lithium dendrite suppression and enhanced interfacial compatibility enabled by an ex situ SEI on Li anode for LAGP-based all-solid-state batteries
Lin et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon
Gao et al. Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries
Chen et al. Directly formed alucone on lithium metal for high-performance Li batteries and Li–S batteries with high sulfur mass loading
Liu et al. Artificial lithium isopropyl-sulfide macromolecules as an ion-selective interface for long-life lithium–sulfur batteries
Yao et al. Double-layered multifunctional composite electrolytes for high-voltage solid-state lithium-metal batteries
Jia et al. Pretreatment of lithium surface by using iodic acid (HIO3) to improve its anode performance in lithium batteries
Zhang et al. Metal–organic framework-supported poly (ethylene oxide) composite gel polymer electrolytes for high-performance lithium/sodium metal batteries
Guo et al. PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes
Chen et al. Role of lithiophilic metal sites in lithium metal anodes
Wang et al. Addressing the low solubility of a solid electrolyte interphase stabilizer in an electrolyte by composite battery anode design
Jin et al. Modulating electron conducting properties at lithium anode interfaces for durable lithium–sulfur batteries
Zhang et al. Suppressing dendrite growth of a lithium metal anode by modifying conventional polypropylene separators with a composite layer
Kim et al. Achieving high-performance Li–S batteries via polysulfide adjoining interface engineering
Jiao et al. Stable Li–Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface
Guo et al. High current enabled stable lithium anode for ultralong cycling life of lithium–oxygen batteries
Qiu et al. Growing nanostructured CuO on copper foil via chemical etching to upgrade metallic lithium anode
Zhang et al. Achieve stable lithium metal anode by sulfurized-polyacrylonitrile modified separator for high-performance lithium batteries
Periyapperuma et al. High Current Cycling in a Superconcentrated Ionic Liquid Electrolyte to Promote Uniform Li Morphology and a Uniform LiF-Rich Solid Electrolyte Interphase
You et al. Stabilized and almost dendrite-free Li metal anodes by in situ construction of a composite protective layer for Li metal batteries
Chen et al. A single-ion polymer composite electrolyte via in situ polymerization of electrolyte monomers into a porous MOF-based fibrous membrane for lithium metal batteries