Sahraoui et al., 2001 - Google Patents
Novel nonlinear optical organic materials: DithienylethylenesSahraoui et al., 2001
- Document ID
- 9675184462592457322
- Author
- Sahraoui B
- Kityk I
- Fuks I
- Paci B
- Baldeck P
- Nunzi J
- Frere P
- Roncali J
- Publication year
- Publication venue
- The Journal of Chemical Physics
External Links
Snippet
Research of new optical materials which have a great potential for use in nonlinear optical devices is one of the current interesting subject of investigations. Due to their efficiency, chemical flexibility, and high conjugated framework, organic compounds have received …
- 230000003287 optical 0 title abstract description 36
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/355—Non-linear optics characterised by the materials used
- G02F1/361—Organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam with frequency components different from those of the incident light beams is generated
- G02F1/3544—Particular phase matching techniques
- G02F2001/3548—Quasi-phase-matching [QPM], e.g. using a periodic domain inverted structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam with frequency components different from those of the incident light beams is generated
- G02F1/3534—Three-wave interaction, e.g. sum-difference frequency generation
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/37—Non-linear optics for second-harmonic generation
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/39—Non-linear optics for parametric generation or amplification of light, infra-red or ultra-violet waves
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F2001/3528—Non-linear optics for producing a supercontinuum
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Senthil et al. | Investigation of synthesis, crystal structure and third-order NLO properties of a new stilbazolium derivative crystal: a promising material for nonlinear optical devices | |
Yuan et al. | Structure and properties of a complex crystal for laser diode frequency doubling: Cadmium mercury thiocyanate | |
Senthil et al. | Synthesis, growth, structural and HOMO and LUMO, MEP analysis of a new stilbazolium derivative crystal: a enhanced third-order NLO properties with a high laser-induced damage threshold for NLO applications | |
Anis et al. | Bulk growth of undoped and Nd3+ doped zinc thiourea chloride (ZTC) monocrystal: Exploring the remarkably enhanced structural, optical, electrical and mechanical performance of Nd3+ doped ZTC crystal for NLO device applications | |
Miniewicz et al. | Single-and two-photon excited fluorescence in organic nonlinear optical single crystal 3-(1, 1-dicyanoethenyl)-1-phenyl-4, 5-dihydro-1 h-pyrazole | |
Szukalski et al. | Chemical structure versus second-order nonlinear optical response of the push–pull type pyrazoline-based chromophores | |
Nivetha et al. | Structural, spectral, thermal, and optical studies of stilbazolium derivative crystal:(E)-4-(3-hydroxy-4-methoxystyryl)-1-methyl pyridinium iodide monohydrate | |
Nivetha et al. | Evaluation of structural, spectral, thermal and optical properties of an efficient centrosymmetric organic single crystal 2-[2-(4-diethylamino-phenyl)-vinyl]-1-methyl pyridinium tetrafluoroborate for nonlinear optical applications | |
Vediyappan et al. | Synthesis, crystal growth, structure, crystalline perfection, thermal, linear, and nonlinear optical investigations on 2-amino-5-nitropyridine 4-chlorobenzoic acid (1: 1): a novel organic single crystal for NLO and optical limiting applications | |
Mehkoom et al. | Molecular structure tuning impact on optical linearity and nonlinearity of novel push-pull conjugated organic systems for photonic applications | |
Justin et al. | Growth, structural, thermal, mechanical, optical and third order nonlinear optical studies of 3-hydroxy 2-nitropyridine single crystal | |
Murugan et al. | Studies on the growth and characterization of a new organic nonlinear optical single crystal: 2-amino 5-methyl-pyridinium 4-methoxybenzoate for optoelectronic and photonic devices | |
Machikhin et al. | Attenuation of the intensities of spectral components of a multiwavelength pulsed laser system by means of the Bragg diffraction of radiation by several acoustic waves | |
Natarajan et al. | Synthesis and characterization of l-asparagine monohydrate potassium dichromate (LAMPDC): novel material for optical limiting applications | |
Sahraoui et al. | Novel nonlinear optical organic materials: Dithienylethylenes | |
Li et al. | Blue light emission from an organic nonlinear optical crystal of 4-aminobenzophenone pumped by a laser diode | |
WO1989001182A1 (en) | Poly-yne nonlinear optical materials | |
Andreev et al. | Frequency up-conversion in a mercury thiogallate crystal | |
Jananakumar et al. | Synthesis, growth and characterization of novel semiorganic nonlinear optical potassium boro-oxalate (KBO) single crystals | |
Perry et al. | Organic salts with large electro-optic coefficients | |
Wang et al. | 8 mJ 355 nm 1 kHz burst-mode picosecond laser systems | |
US5167000A (en) | Optical wavelength converter | |
Ehsanian et al. | Nonlinear optical properties of fluorescence carbazole derivative using continue wave blue laser | |
US3982136A (en) | Ternary ferroelectric fluoride nonlinear devices | |
Zhou et al. | Mixed-anion square-pyramid [SbS3I2] units causing strong second-harmonic generation intensity and large birefringence |