Li et al., 2010 - Google Patents
Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion batteryLi et al., 2010
View PDF- Document ID
- 9612555809728212892
- Author
- Li X
- Qu M
- Huai Y
- Yu Z
- Publication year
- Publication venue
- Electrochimica Acta
External Links
Snippet
A Li4Ti5O12/carbon/carbon nano-tubes (Li4Ti5O12/C/CNTs) composite was synthesized by using a solid-state method. For comparison, a Li4Ti5O12/carbon (Li4Ti5O12/C) composite and a pristine Li4Ti5O12 were also synthesized in the present study. The microstructure and …
- 239000002041 carbon nanotube 0 title abstract description 94
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B31/00—Carbon; Compounds thereof
- C01B31/02—Preparation of carbon; Purification; After-treatment
- C01B31/04—Graphite, including modified graphite, e.g. graphitic oxides, intercalated graphite, expanded graphite or graphene
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery | |
Yang et al. | Electrochemical performance of V-doped spinel Li4Ti5O12/C composite anode in Li-half and Li4Ti5O12/LiFePO4-full cell | |
Xue et al. | Preparation of pure and metal-doped Li4Ti5O12 composites and their lithium-storage performances for lithium-ion batteries | |
Ji et al. | Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery | |
Zeng et al. | Composites of V2O3–ordered mesoporous carbon as anode materials for lithium-ion batteries | |
Xu et al. | A two-step method for preparing Li 4 Ti 5 O 12–graphene as an anode material for lithium-ion hybrid capacitors | |
Kim et al. | N-doped carbon-embedded TiN nanowires as a multifunctional separator for Li–S batteries with enhanced rate capability and cycle stability | |
Miao et al. | Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries | |
Mu et al. | Nano-sized Li4Ti5O12/C anode material with ultrafast charge/discharge capability for lithium ion batteries | |
Wang et al. | Synthesis and electrochemical properties of La-doped Li4Ti5O12 as anode material for Li-ion battery | |
Wang et al. | An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/Li4Ti5O12 full-cell | |
Chang et al. | Effects of particle size and carbon coating on electrochemical properties of LiFePO 4/C prepared by hydrothermal method | |
Kim et al. | Two-dimensional nanocomposites based on tungsten oxide nanoplates and graphene nanosheets for high-performance lithium ion batteries | |
Li et al. | Preparation and electrochemical performance of Li4Ti5O12/graphitized carbon nanotubes composite | |
Sun et al. | Nanocomposites as Anode for Lithium-Ion Battery | |
Lin et al. | Synthesis of carbon-coated Li4Ti5O12 nanosheets as anode materials for high-performance lithium-ion batteries | |
Fang et al. | Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery | |
Büyükyazi et al. | 3D nanoarchitectures of α-LiFeO2 and α-LiFeO2/C nanofibers for high power lithium-ion batteries | |
Wei et al. | Enhanced electrochemical performance of a LTO/N-doped graphene composite as an anode material for Li-ion batteries | |
Li et al. | Solvothermal synthesis of micro-/nanoscale Cu/Li4Ti5O12 composites for high rate Li-ion batteries | |
Luo et al. | Templated assembly of LiNi0· 8Co0· 15Al0· 05O2/graphene nano composite with high rate capability and long-term cyclability for lithium ion battery | |
Kim et al. | Thermally controlled V2O5 nanoparticles as cathode materials for lithium-ion batteries with enhanced rate capability | |
Xie et al. | Fabrication of a novel TiO 2/S composite cathode for high performance lithium–sulfur batteries | |
Zhou et al. | The enhanced cycling stability and rate capability of sodium-modified Li3VO4 anode material for lithium-ion batteries | |
He et al. | Synthesis and characterization of a sulfur/TiO 2 composite for Li-S battery |