Nothing Special   »   [go: up one dir, main page]

Liang et al., 2010 - Google Patents

Independent air dehumidification with membrane-based total heat recovery: Modeling and experimental validation

Liang et al., 2010

Document ID
9327161624012763854
Author
Liang C
Zhang L
Pei L
Publication year
Publication venue
International Journal of Refrigeration

External Links

Snippet

Fresh air ventilation is helpful for the control of epidemic respiratory disease like Swine flu (H1N1). Fresh air dehumidification systems with energy recovery measures are the key equipments to realize this goal. As a solution, an independent air dehumidification system …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/0009Electrical control or safety systems or apparatus
    • F24F11/001Control systems or circuits characterised by their inputs, e.g. using sensors
    • F24F2011/0041Pressure
    • F24F2011/0042Air pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/0009Electrical control or safety systems or apparatus
    • F24F11/0086Control systems or circuits characterised by other control features, e.g. display or monitoring devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/50Systems profiting of external/internal conditions
    • Y02B30/56Heat recovery units
    • Y02B30/563Air to air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/50Systems profiting of external/internal conditions
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/0001Control or safety systems or apparatus for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety systems or apparatus
    • F24F11/0008Control or safety systems or apparatus for air-humidification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening

Similar Documents

Publication Publication Date Title
Liang et al. Independent air dehumidification with membrane-based total heat recovery: Modeling and experimental validation
Cui et al. Performance evaluation of an indirect pre-cooling evaporative heat exchanger operating in hot and humid climate
Ge et al. Comparison of experimental data and a model for heat and mass transfer performance of a liquid-to-air membrane energy exchanger (LAMEE) when used for air dehumidification and salt solution regeneration
Gao et al. Experimental investigation on integrated liquid desiccant–Indirect evaporative air cooling system utilizing the Maisotesenko–Cycle
Nasr et al. A review of frosting in air-to-air energy exchangers
Zhang et al. A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: modeling and experimental validation
Abd El-Baky et al. Heat pipe heat exchanger for heat recovery in air conditioning
Liu et al. Performance of a quasi-counter-flow air-to-air membrane energy exchanger in cold climates
Choi et al. Analysis of the variable heat exchange efficiency of heat recovery ventilators and the associated heating energy demand
Zhang et al. Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system
Sheng et al. Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system
Ge et al. Analytical model based performance evaluation, sizing and coupling flow optimization of liquid desiccant run-around membrane energy exchanger systems
Anisimov et al. Frost formation in the cross-flow plate heat exchanger for energy recovery
Boukhanouf et al. Design and performance analysis of a regenerative evaporative cooler for cooling of buildings in arid climates
Pandelidis et al. Performance comparison between counter-and cross-flow indirect evaporative coolers for heat recovery in air conditioning systems in the presence of condensation in the product air channels
De Antonellis et al. Desiccant wheels for air humidification: An experimental and numerical analysis
Liang et al. Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery
Ahmad et al. Performance evaluation of an indirect evaporative cooler under controlled environmental conditions
Chen et al. Experimental study of plate type air cooler performances under four operating modes
Qiu et al. An energy exchange efficiency prediction approach based on multivariate polynomial regression for membrane-based air-to-air energy recovery ventilator core
Ling et al. Experimental evaluation and performance enhancement prediction of desiccant assisted separate sensible and latent cooling air-conditioning system
Su et al. Experimental study and correlations for heat and mass transfer coefficients in the dehumidifier of a frost-free heat pump system
Comino et al. Experimental and numerical analysis of desiccant wheels activated at low temperatures
Fan et al. Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control
Krishnan et al. Development of a small-scale test facility for effectiveness evaluation of fixed-bed regenerators