Bruton, 1978 - Google Patents
Multiple-amplifier RC-active filter design with emphasis on GIC realizationsBruton, 1978
- Document ID
- 9215395204857816837
- Author
- Bruton L
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems
External Links
Snippet
The use of more than one amplifier to realize an RC-active filter is now economically viable because of the relatively low cost of high-performance operational amplifiers. In this review article, multipleamplifier RC-active synthesis and design techniques are considered …
- 238000000034 method 0 abstract description 20
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/04—Frequency selective two-port networks
- H03H11/12—Frequency selective two-port networks using amplifiers with feedback
- H03H11/1217—Frequency selective two-port networks using amplifiers with feedback using a plurality of operational amplifiers
- H03H11/1252—Two integrator-loop-filters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/04—Frequency selective two-port networks
- H03H11/12—Frequency selective two-port networks using amplifiers with feedback
- H03H11/1213—Frequency selective two-port networks using amplifiers with feedback using transistor amplifiers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/04—Frequency selective two-port networks
- H03H11/12—Frequency selective two-port networks using amplifiers with feedback
- H03H11/1291—Current or voltage controlled filters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/04—Frequency selective two-port networks
- H03H11/12—Frequency selective two-port networks using amplifiers with feedback
- H03H11/126—Frequency selective two-port networks using amplifiers with feedback using a single operational amplifier
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/17—Structural details of sub-circuits of frequency selective networks
- H03H7/1741—Comprising typical LC combinations, irrespective of presence and location of additional resistors
- H03H7/1775—Parallel LC in shunt or branch path
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/40—Impedance converters
- H03H11/42—Gyrators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/06—Frequency selective two-port networks including resistors
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/46—One-port networks
- H03H11/48—One-port networks simulating reactances
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezo-electric or electrostrictive material
- H03H9/542—Filters comprising resonators of piezo-electric or electrostrictive material including passive elements
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/075—Ladder networks, e.g. electric wave filters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/0153—Electrical filters; Controlling thereof
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H19/00—Networks using time-varying elements, e.g. N-path filters
- H03H19/004—Switched capacitor networks
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/42—Balance/unbalance networks
- H03H7/425—Balance-balance networks
- H03H7/427—Common-mode filters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H1/00—Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
- H03H1/0007—Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H15/00—Transversal filters
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen | Passive, active, and digital filters | |
Martin et al. | Exact design of switched-capacitor bandpass filters using coupled-biquad structures | |
Bruton | Multiple-amplifier RC-active filter design with emphasis on GIC realizations | |
Fabre et al. | Universal current mode biquad implemented from two second generation current conveyors | |
Sussman-Fort | Design concepts for microwave GaAs FET active filters | |
Wu et al. | Design of current-mode ladder filters using coupled-biquads | |
JP2520055B2 (en) | Polarized Leapfrog Filter | |
Geiger et al. | Integrator design for high-frequency active filter applications | |
Bruton et al. | Tunable RC-active filters using periodically switched conductances | |
Nowrouzian et al. | Design and DSP-chip implementation of a novel bilinear-LDI digital Jaumann filter | |
Shouno et al. | Synthesis of a complex coefficient filter by passive elements including ideal transformers and its simulation using operational amplifiers | |
US4245202A (en) | Floating gyrator having a current cancellation circuit | |
JP2539301B2 (en) | Polarized Leapfrog Filter | |
Shouno et al. | Synthesis of a passive complex filter using transformers | |
Bruton et al. | On the high-frequency limitations of active ladder networks | |
CN106209016B (en) | Method for simplifying elliptical band-pass filter | |
FUJII | RC active filter using grounded active immittances based on simulation of LC ladder filters | |
Mohan | Novel OTA-C filter structures using grounded capacitors | |
Bruton | Electronically tunable analog active filters | |
Jurisic et al. | Low-power high-order band-pass active-RC allpole filters using a" lossy" LP-BP transformation | |
Silva-Martinez et al. | Strategic SC filter design based on a comparative study of various S-to Z-mappings | |
QUACH | Design of single amplifier filters with finite transmission zeros | |
Smolka | Synthesis of switched-capacitor circuits simulating canonical reactance sections | |
Ishibashi | Active RC filter based on simulation of dissipative LC filters | |
Shouno et al. | Synthesis and active realization of a three-phase complex coefficient filter using gyrators |