Nothing Special   »   [go: up one dir, main page]

Gao et al., 2021 - Google Patents

A novel image-based convolutional neural network approach for traffic congestion estimation

Gao et al., 2021

Document ID
911547685655951231
Author
Gao Y
Li J
Xu Z
Liu Z
Zhao X
Chen J
Publication year
Publication venue
Expert Systems with Applications

External Links

Snippet

Traditional image-based traffic congestion estimation methods generally include two steps, which first extract the vehicles from the surveillance images, then calculate the congestion index using the vehicle counts. When working with vast amount of video frames, these …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/0063Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/00771Recognising scenes under surveillance, e.g. with Markovian modelling of scene activity
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/68Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6288Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
    • G06K9/629Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/20Image acquisition
    • G06K9/32Aligning or centering of the image pick-up or image-field
    • G06K9/3233Determination of region of interest
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions

Similar Documents

Publication Publication Date Title
Li et al. Domain adaptation from daytime to nighttime: A situation-sensitive vehicle detection and traffic flow parameter estimation framework
Gao et al. A novel image-based convolutional neural network approach for traffic congestion estimation
Al-qaness et al. An improved YOLO-based road traffic monitoring system
Ni et al. An improved deep network-based scene classification method for self-driving cars
Munawar et al. After the flood: A novel application of image processing and machine learning for post-flood disaster management
Abdollahi et al. Road extraction from high-resolution orthophoto images using convolutional neural network
Sharma et al. Vehicle identification using modified region based convolution network for intelligent transportation system
Nigam et al. A review of different components of the intelligent traffic management system (ITMS)
Xing et al. Traffic sign recognition using guided image filtering
Xing et al. The Improved Framework for Traffic Sign Recognition Using Guided Image Filtering
Yusuf et al. Enhancing Vehicle Detection and Tracking in UAV Imagery: A Pixel Labeling and Particle Filter Approach
Chen et al. MASK-CNN-Transformer for real-time multi-label weather recognition
Azimjonov et al. A vision-based real-time traffic flow monitoring system for road intersections
Fang et al. Enhanced YOLOv5 algorithm for helmet wearing detection via combining bi-directional feature pyramid, attention mechanism and transfer learning
Hellert et al. Using algorithm selection for adaptive vehicle perception aboard UAV
Yang et al. Multi visual feature fusion based fog visibility estimation for expressway surveillance using deep learning network
Zha et al. Semi-supervised learning-based satellite remote sensing object detection method for power transmission towers
Boppana et al. Comparative analysis of single-stage yolo algorithms for vehicle detection under extreme weather conditions
Roy et al. AWDMC-Net: classification of adversarial weather degraded multiclass scenes using a convolution neural network
Zhang et al. Bus passenger flow statistics algorithm based on deep learning
Wu et al. Research on asphalt pavement disease detection based on improved YOLOv5s
Wang et al. Drosophila-inspired 3D moving object detection based on point clouds
Cheng et al. Multi-class objects detection method in remote sensing image based on direct feedback control for convolutional neural network
Braga et al. Lidar and non-extensive particle filter for UAV autonomous navigation
Patil et al. Yolov4-based hybrid feature enhancement network with robust object detection under adverse weather conditions