Nothing Special   »   [go: up one dir, main page]

Du et al., 2010 - Google Patents

A low-cost attitude estimation system for UAV application

Du et al., 2010

Document ID
8985616566964879235
Author
Du D
Liu L
Du X
Publication year
Publication venue
2010 Chinese Control and Decision Conference

External Links

Snippet

In this paper, a low-cost attitude estimation system is introduced. The system is developed with MEMS sensors including rate gyros and accelerometers. Composition and principle of the system are described. The rigid body kinematics is modeled with quaternion, such that …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/10Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/10Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/34Rotary gyroscopes for indicating a direction in the horizontal plane, e.g. directional gyroscopes
    • G01C19/38Rotary gyroscopes for indicating a direction in the horizontal plane, e.g. directional gyroscopes with north-seeking action by other than magnetic means, e.g. gyrocompasses using earth's rotation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/06Rotors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments and devices referred to in the preceding groups
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments and devices referred to in the preceding groups initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw

Similar Documents

Publication Publication Date Title
CN109813311B (en) Unmanned aerial vehicle formation collaborative navigation method
WO2020220729A1 (en) Inertial navigation solution method based on angular accelerometer/gyroscope/accelerometer
Wu et al. Fast complementary filter for attitude estimation using low-cost MARG sensors
CN101413800B (en) Navigating and steady aiming method of navigation / steady aiming integrated system
Hong Fuzzy logic based closed-loop strapdown attitude system for unmanned aerial vehicle (UAV)
Kingston et al. Real-time attitude and position estimation for small UAVs using low-cost sensors
Wu et al. A novel approach for attitude estimation based on MEMS inertial sensors using nonlinear complementary filters
CN110954102B (en) Magnetometer-assisted inertial navigation system and method for robot positioning
CN102692225A (en) Attitude heading reference system for low-cost small unmanned aerial vehicle
CN111024070A (en) Inertial foot binding type pedestrian positioning method based on course self-observation
CN106989761B (en) A kind of spacecraft Guidance instrumentation on-orbit calibration method based on adaptive-filtering
Liu et al. A complementary filter based on multi-sample rotation vector for attitude estimation
Jing et al. Attitude estimation for UAV using extended Kalman filter
CN113340298B (en) Inertial navigation and dual-antenna GNSS external parameter calibration method
Roh et al. Dynamic accuracy improvement of a MEMS AHRS for small UAVs
CN110793515A (en) Unmanned aerial vehicle attitude estimation method based on single-antenna GPS and IMU under large-mobility condition
Guan et al. Sensor fusion of gyroscope and accelerometer for low-cost attitude determination system
Weibel et al. Small unmanned aerial system attitude estimation for flight in wind
Du et al. A low-cost attitude estimation system for UAV application
Xue et al. MEMS-based multi-sensor integrated attitude estimation technology for MAV applications
Yang et al. Model-free integrated navigation of small fixed-wing UAVs full state estimation in wind disturbance
Pan et al. Attitude estimation of miniature unmanned helicopter using unscented kalman filter
Wang et al. Uav attitude measurement based on enhanced mahony complementary filter
Wang et al. Attitude estimation for UAV with low-cost IMU/ADS based on adaptive-gain complementary filter
Chen et al. Study on information fusion algorithm for the miniature AHRS