Feng et al., 2011 - Google Patents
Bi-iterative algorithm for extracting independent components from array signalsFeng et al., 2011
- Document ID
- 8850263017434226190
- Author
- Feng D
- Zhang H
- Zheng W
- Publication year
- Publication venue
- IEEE Transactions on Signal Processing
External Links
Snippet
It is well known that the complex-valued nonunitary joint diagonalization (NUJD) problem in blind source separation (BSS) can be linked to the trilinear models. In this paper, by exploring the special structure of the NUJD problem in BSS, we introduce a novel symmetric …
- 238000000926 separation method 0 abstract description 8
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/624—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on a separation criterion, e.g. independent component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6261—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
- G06K9/629—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00496—Recognising patterns in signals and combinations thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00362—Recognising human body or animal bodies, e.g. vehicle occupant, pedestrian; Recognising body parts, e.g. hand
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arroyo et al. | Inference for multiple heterogeneous networks with a common invariant subspace | |
Yu et al. | Blind source separation: theory and applications | |
Zhang et al. | Robust latent low rank representation for subspace clustering | |
Pope et al. | Blind signal separation I. linear, instantaneous combinations: I. linear, instantaneous combinations | |
Feng et al. | Bi-iterative algorithm for extracting independent components from array signals | |
Hansen et al. | On independent component analysis for multimedia signals | |
EP2232407A1 (en) | Method for separating mixed signals into a plurality of component signals | |
Zhang et al. | Independent vector analysis for convolutive blind noncircular source separation | |
Razaviyayn et al. | Dictionary learning for sparse representation: Complexity and algorithms | |
Rodriguez et al. | General non-orthogonal constrained ICA | |
Feng et al. | An efficient multistage decomposition approach for independent components | |
Spurek et al. | ICA based on asymmetry | |
Salhov et al. | Approximately-isometric diffusion maps | |
Yang et al. | Projection-pursuit-based method for blind separation of nonnegative sources | |
Xiang et al. | Blind source separation: dependent component analysis | |
Hamidi Ghalehjegh et al. | Fast block-sparse decomposition based on SL0 | |
Ye et al. | New Fast-ICA algorithms for blind source separation without prewhitening | |
Ma et al. | Copula component analysis | |
Mutihac et al. | A comparative survey on adaptive neural network algorithms for independent component analysis | |
Todros et al. | QML-based joint diagonalization of positive-definite Hermitian matrices | |
Mahajan et al. | Blind source separation using modified contrast function in fast ICA algorithm | |
Zhu et al. | Complex Principle Kurtosis Analysis | |
Ma et al. | Review of ICA based fixed-point algorithm for blind separation of mixed images | |
Douglas et al. | Simple, robust, and memory-efficient FastICA algorithms using the Huber M-estimator cost function | |
Shi et al. | Noisy blind source separation by nonlinear autocorrelation |