Duong et al., 1976 - Google Patents
Central nervous system active compounds. I. The synthesis of some caprolactam derivatives substituted at N1, C2 and C3Duong et al., 1976
- Document ID
- 8709983319168796705
- Author
- Duong T
- Prager R
- Ward A
- Kerr D
- Publication year
- Publication venue
- Australian Journal of Chemistry
External Links
Snippet
The synthesis of a number of caprolactam derivatives with alkyl, aryl and hetero atom substituents at N1, C2 and C3 is described. Alkylation and arylation at C3 by a variety of methods is discussed. Some of these compounds are powerful convulsing agents; a few are …
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N Caprolactam   O=C1CCCCCN1 0 title abstract description 86
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/10—Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D221/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
- C07D221/02—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D223/00—Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
- C07D223/02—Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
- C07D223/06—Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D223/12—Nitrogen atoms not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/06—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D243/00—Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms
- C07D243/06—Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1,4
- C07D243/10—Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1,4 condensed with carbocyclic rings or ring systems
- C07D243/14—1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines
- C07D243/16—1,4-Benzodiazepines; Hydrogenated 1,4-benzodiazepines substituted in position 5 by aryl radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/06—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5106979A (en) | Method for the synthesis of huperzine A and analogs thereof and compounds useful therein | |
EP1026157B1 (en) | Method for the synthesis of huperzine A and analogs thereof and compounds useful therein | |
Van Tamelen et al. | Total syntheses of dl-ajmalicine and emetine | |
Wiesner et al. | Synthesis of Dimethylapoerysopine and an Approach to the Total Synthesis of the Unrearranged Erythrina Bases | |
Dolby et al. | Total synthesis of (+-)-dasycarpidone,(+-)-epidasycarpidone, and (+-)-epiuleine | |
Duong et al. | Central nervous system active compounds. I. The synthesis of some caprolactam derivatives substituted at N1, C2 and C3 | |
Kuehne et al. | Total syntheses of tubotaiwine and 19, 20-dihydro-20-epi-akuammicine | |
Granchelli et al. | Aporphines. 27. Mechanistic aspects of the rearrangement of thebaine and codeine analogs in methanesulfonic acid. Improved method for the synthesis of N-alkylated aporphines | |
Pages et al. | 1-Amino-2-(4-imidazolyl) cyclopropanecarboxylic Acid1a | |
Bobbitt et al. | Synthesis of Isoquinolines. I. 1 Copyrine and Isoquinoline Systems Derived from 3-Cyano-4-methylpyridine2, 3 | |
JPH0322390B2 (en) | ||
Meyer et al. | Photolysis of 1, 1-Dimethyl-trans-decalin-10-carbonyl Azide. An Analog of the A/B/E Rings of Some Diterpenoid Alkaloids1a | |
Groundwater et al. | A novel synthesis of didehydroamino acid esters from azomethine ylides | |
Wells et al. | Thietane 1, 1-Dioxides1 | |
Mariano et al. | The chemistry of azocines. Intermediates for the synthesis of pyrrolizidines | |
Robl et al. | A synthetic route for the generation of C-7 substituted azepinones | |
US4622336A (en) | 3,3-dialkyl-and 3,3-alkylene-indoline derivatives, processes for their production and pharmaceutical compositions comprising them | |
Viallon et al. | Thermal and acid-catalysed sigmatropic rearrangements of allylamino-methoxy-1, 2-benzoquinones | |
Marquez et al. | 1, 3-Diazepinones. 1. Synthesis of 5-hydroxyperhydro-1, 3-diazepin-2-one | |
Hsu et al. | Total Synthesis of (±)‐3‐Deoxy‐7, 8‐dihydromorphine,(±)‐4‐Methoxy‐N‐methylmorphinan‐6‐one and 2, 4‐Dioxygenated (±)‐Congeners | |
AU3798399A (en) | Acridin derivatives | |
Meyers et al. | Thiazine Derivatives. III. The Synthesis of Some 2-Substituted 5, 6-Dihydro-1, 3 (4H)-thiazines and Tetrahydro-1, 3-thiazines Related to Cephams1 | |
Chaykovsky et al. | Transformation products of 2-(2-imidazolin-2-yl) benzophenone | |
US3687937A (en) | 1,5-methano-3-benzazocine derivatives | |
Wolinsky et al. | The reaction of 3-propylindole with aldehydes preparation of 2-(α-aminoalkyl) indoles |