Nothing Special   »   [go: up one dir, main page]

Huang et al., 2021 - Google Patents

Fully convolutional network with attention modules for semantic segmentation

Huang et al., 2021

Document ID
8663359182149063516
Author
Huang Y
Xu H
Publication year
Publication venue
Signal, Image and Video Processing

External Links

Snippet

Fully convolutional network is a powerful end-to-end model for semantic segmentation. However, it performs prediction pixel by pixel to pose weak consistency on intra-category. This paper proposes fully convolutional network with attention modules for semantic …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30781Information retrieval; Database structures therefor; File system structures therefor of video data
    • G06F17/30784Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
    • G06F17/30799Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • G06K9/4671Extracting features based on salient regional features, e.g. Scale Invariant Feature Transform [SIFT] keypoints
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30244Information retrieval; Database structures therefor; File system structures therefor in image databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes

Similar Documents

Publication Publication Date Title
Hu et al. Joint pyramid attention network for real-time semantic segmentation of urban scenes
Huang et al. Fully convolutional network with attention modules for semantic segmentation
Fu et al. MCFF-CNN: Multiscale comprehensive feature fusion convolutional neural network for vehicle color recognition based on residual learning
Zhai et al. FPANet: feature pyramid attention network for crowd counting
Zhao et al. Comprehensive feature enhancement module for single-shot object detector
Yang et al. Attention to refine through multi scales for semantic segmentation
Jiang et al. Sparse attention module for optimizing semantic segmentation performance combined with a multi-task feature extraction network
Sheng et al. LSNet: Real-time attention semantic segmentation network with linear complexity
Chen et al. BiShuffleNeXt: a lightweight bi-path network for remote sensing scene classification
Ma et al. Triple-strip attention mechanism-based natural disaster images classification and segmentation
Li et al. Learning residual refinement network with semantic context representation for real-time saliency object detection
Wang et al. STCD: Efficient Siamese transformers-based change detection method for remote sensing images
Guo et al. Salient object detection from low contrast images based on local contrast enhancing and non-local feature learning
Wang et al. Road extraction based on improved DeepLabv3 plus in remote sensing image
Yin et al. Online hard region mining for semantic segmentation
Hu et al. LBARNet: Lightweight bilateral asymmetric residual network for real-time semantic segmentation
Ou et al. Semantic segmentation based on double pyramid network with improved global attention mechanism
Ao et al. Few-shot semantic segmentation via mask aggregation
Gao et al. Multi-branch aware module with channel shuffle pixel-wise attention for lightweight image super-resolution
Chen et al. HA-Transformer: Harmonious aggregation from local to global for object detection
Su et al. MVSN: A multi-view stack network for human parsing
Mo et al. Dimension-aware attention for efficient mobile networks
Xu et al. FPANet: Feature-enhanced position attention network for semantic segmentation
Sariturk et al. Comparison of residual and dense neural network approaches for building extraction from high-resolution aerial images
Chudasama et al. Compact and progressive network for enhanced single image super-resolution—ComPrESRNet