Nothing Special   »   [go: up one dir, main page]

Simova et al., 2003 - Google Patents

Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-lactobacillus casei subsp. casei co-cultures in whey ultrafiltrate

Simova et al., 2003

View PDF
Document ID
8590430357415152120
Author
Simova E
Frengova G
Beshkova D
Publication year
Publication venue
Zeitschrift für Naturforschung C

External Links

Snippet

Under intensive aeration (1.3 l/l min) the associated growth of Rhodotorula rubra GED2 and Lactobacillus casei subsp. casei in cheese whey ultrafiltrate (55 g lactose/l) proceeded effectively for both cultures with production of maximum carotenoids (12.4 mg/l culture fluid) …
Continue reading at www.degruyter.com (PDF) (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Micro-organisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving micro-organisms or compositions thereof; Processes of preparing or isolating a composition containing a micro-organism; Culture media therefor
    • C12N1/14Fungi Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RPROCESSES USING MICRO-ORGANISMS
    • C12R1/00Processes using micro-organisms
    • C12R1/01Processes using micro-organisms using bacteria or actinomycetales
    • C12R1/185Escherichia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RPROCESSES USING MICRO-ORGANISMS
    • C12R1/00Processes using micro-organisms
    • C12R1/01Processes using micro-organisms using bacteria or actinomycetales
    • C12R1/07Bacillus
    • C12R1/11Bacillus megaterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Micro-organisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving micro-organisms or compositions thereof; Processes of preparing or isolating a composition containing a micro-organism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using micro-organisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Micro-organisms

Similar Documents

Publication Publication Date Title
Simova et al. Effect of aeration on the production of carotenoid pigments by Rhodotorula rubra-lactobacillus casei subsp. casei co-cultures in whey ultrafiltrate
Frengova et al. Formation of carotenoids by Rhodotorula glutinis in whey ultrafiltrate
Kotzamanidis et al. Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130
Geun-Eog et al. Improvement of $\gamma-Aminobutyric $ Acid (GABA) Production Using Cell Entrapment of Lactobacillus brevis GABA 057
Malisorn et al. Improved β-carotene production of Rhodotorula glutinis in fermented radish brine by continuous cultivation
US8592198B2 (en) Method for culturing microorganisms on a growth substrate comprising biomass obtained from methanotrophic bacteria
Frengova et al. Effect of temperature changes on the production of yeast pigments co-cultivated with lacto-acid bacteria in whey ultrafiltrate
Afifi Enhancement of lactic acid production by utilizing liquid potato
CN112251383B (en) Lactobacillus casei capable of producing phenyllactic acid and application thereof
CA2291878A1 (en) Lactic acid bacterial starter cultures and compositions thereof
CN105950529B (en) Produce recombination Corynebacterium glutamicum, its construction method and the application of 3- hydracrylic acid
Polak-Berecka et al. Optimization of medium composition for enhancing growth of Lactobacillus rhamnosus PEN using response surface methodology
Frengova et al. Carotenoid production by lactoso-negative yeasts co-cultivated with lactic acid bacteria in whey ultrafiltrate
Yee et al. The production of functional γ-aminobutyric acid Malaysian soy sauce koji and moromi using the trio of Aspergillus oryzae NSK, Bacillus cereus KBC, and the newly identified Tetragenococcus halophilus KBC in liquid-state fermentation
TW201928062A (en) Method for producing butyric acid and/or its salts
KR20200071030A (en) Strain having improved productivity of GABA, a composition for producing GABA containing the same, a method for producing GABA using the same, and a method for increasing the amount of GABA in insects using the same
Amrane et al. Lactic acid production rates during the different growth phases of Lactobacillus helveticus cultivated on whey supplemented with yeast extract
JP6814131B2 (en) Co-culture of propionic acid bacteria and yeast
JP4132253B2 (en) Ammonia-resistant L (+)-lactic acid-producing bacterium and L (+)-lactic acid production method
Hun et al. Bioprocess development for high cell mass production of the probiotic yeast-Kluyveromyces lactis
Özen et al. Effects of substrate concentration on growth and lactic acid production by mixed cultures of Lactobacillus bulgaricus and Streptococcus thermophilus
Furuta et al. Utilization of fermented barley extract obtained from a by-product of barley shochu for nisin production
Prasertsan et al. Utilization and treatment of tuna condensate by photosynthetic bacteria
WO1992021764A1 (en) Process for producing astaxanthin by fermentation
Frengova et al. Improvement of carotenoid-synthesizing yeast Rhodotorula rubra by chemical mutagenesis