Wang et al., 2021 - Google Patents
Paul: Procrustean autoencoder for unsupervised liftingWang et al., 2021
View PDF- Document ID
- 8481162361060484606
- Author
- Wang C
- Lucey S
- Publication year
- Publication venue
- Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
External Links
Snippet
Recent success in casting Non-rigid Structure from Motion (NRSfM) as an unsupervised deep learning problem has raised fundamental questions about what novelty in NRSfM prior could the deep learning offer. In this paper we advocate for a 3D deep auto-encoder …
- 238000005259 measurement 0 abstract description 4
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00362—Recognising human body or animal bodies, e.g. vehicle occupant, pedestrian; Recognising body parts, e.g. hand
- G06K9/00369—Recognition of whole body, e.g. static pedestrian or occupant recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bertasius et al. | Object detection in video with spatiotemporal sampling networks | |
Sengupta et al. | Sfsnet: Learning shape, reflectance and illuminance of facesin the wild' | |
Zhou et al. | Learning face hallucination in the wild | |
Sigal | Human pose estimation | |
Wang et al. | Distill knowledge from nrsfm for weakly supervised 3d pose learning | |
Zheng et al. | Deep learning for event-based vision: A comprehensive survey and benchmarks | |
CN110390249A (en) | The device and method for extracting the multidate information about scene using convolutional neural networks | |
Wang et al. | Paul: Procrustean autoencoder for unsupervised lifting | |
Liu et al. | Iterative relaxed collaborative representation with adaptive weights learning for noise robust face hallucination | |
Owoyemi et al. | Spatiotemporal learning of dynamic gestures from 3d point cloud data | |
Kong et al. | Multigrid predictive filter flow for unsupervised learning on videos | |
Okawara et al. | Action recognition from a single coded image | |
Hang et al. | Spatial-temporal adaptive graph convolutional network for skeleton-based action recognition | |
Wu et al. | Single-shot face anti-spoofing for dual pixel camera | |
Wang et al. | Deep nrsfm++: Towards unsupervised 2d-3d lifting in the wild | |
Wang et al. | TANet: A new paradigm for global face super-resolution via transformer-CNN aggregation network | |
Basavaiah et al. | Robust Feature Extraction and Classification Based Automated Human Action Recognition System for Multiple Datasets. | |
Bhattacharyya et al. | Long-term image boundary prediction | |
Liu et al. | AGDF-Net: learning domain generalizable depth features with adaptive guidance fusion | |
Ma et al. | Hand-eye calibration | |
Huang et al. | 3D human pose estimation with spatial structure information | |
Kishore et al. | Joint Motion Affinity Maps (JMAM) and their impact on deep learning models for 3D sign language recognition | |
Zhang et al. | Dyna-depthformer: Multi-frame transformer for self-supervised depth estimation in dynamic scenes | |
Dabhi et al. | High fidelity 3d reconstructions with limited physical views | |
Kobayashi | Flip-invariant motion representation |