Trampler et al., 2019 - Google Patents
Phase-agile dual-resonance single linearly polarized antenna element for reconfigurable reflectarray applicationsTrampler et al., 2019
View PDF- Document ID
- 8330484178009240892
- Author
- Trampler M
- Gong X
- Publication year
- Publication venue
- IEEE Transactions on Antennas and Propagation
External Links
Snippet
A single-layer dual-resonance tunable reflectarray unit cell supporting a single linear polarization and operating at X-band is presented in this paper. The unit cell is composed of a cross element and a ring element, both capacitively loaded with varactors, enabling …
- 238000010168 coupling process 0 abstract description 23
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/06—Arrays of individually energised active aerial units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0442—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0414—Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/364—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. supraconductor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/16—Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q9/00—Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant aerials
- H01Q9/30—Resonant aerials with feed to end of elongated active element, e.g. unipole
- H01Q9/40—Element having extended radiating surface
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/24—Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/0087—Apparatus or processes specially adapted for manufacturing antenna arrays
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q21/00—Aerial arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q19/00—Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zainarry et al. | A frequency-and pattern-reconfigurable two-element array antenna | |
Huang et al. | Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications | |
Rahmati et al. | High-efficient wideband slot transmitarray antenna | |
Pan et al. | A beam steering horn antenna using active frequency selective surface | |
US10014585B2 (en) | Miniaturized reconfigurable CRLH metamaterial leaky-wave antenna using complementary split-ring resonators | |
Luther et al. | A microstrip patch electronically steerable parasitic array radiator (ESPAR) antenna with reactance-tuned coupling and maintained resonance | |
US6292143B1 (en) | Multi-mode broadband patch antenna | |
Riel et al. | Design of an electronically beam scanning reflectarray using aperture-coupled elements | |
Karnati et al. | A monolithically BST-integrated $ K_ {a} $-band beamsteerable reflectarray antenna | |
Perez-Palomino et al. | Design and evaluation of multi-resonant unit cells based on liquid crystals for reconfigurable reflectarrays | |
US6278410B1 (en) | Wide frequency band planar antenna | |
Karmokar et al. | Single-layer multi-via loaded CRLH leaky-wave antennas for wide-angle beam scanning with consistent gain | |
US8471776B2 (en) | Slotted antenna including an artificial dielectric substrate with embedded periodic conducting rings, for achieving an ideally-uniform, hemispherical radiation/reception when used as a single antenna element, or for azimuth(φ)-independent impedance-matched electronic beam scanning when used as a large antenna array | |
Hum et al. | Integrated MEMS reflectarray elements | |
Cao et al. | Capacitive probe‐fed compact dual‐band dual‐mode dual‐polarisation microstrip antenna with broadened bandwidth | |
Trampler et al. | Phase-agile dual-resonance single linearly polarized antenna element for reconfigurable reflectarray applications | |
Nguyen et al. | Improved sidelobe-suppression microstrip patch antenna array by uniform feeding networks | |
Ma et al. | Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal | |
Mei et al. | A millimeter-wave gain-filtering transmitarray antenna design using a hybrid lens | |
Narayanasamy et al. | A comprehensive analysis on the state‐of‐the‐art developments in reflectarray, transmitarray, and transmit‐reflectarray antennas | |
Liu et al. | An electronically tunable single-layer reflectarray antenna element with improved bandwidth | |
Li et al. | Low‐profile and wideband gain enhanced Fabry–Perot cavity antenna using gradient PRS and AMC | |
Holland et al. | Design and fabrication of low-cost PUMA arrays | |
Shen et al. | Tunable reflectarray unit cell element using BST technology | |
Sengupta et al. | FSS superstrate loaded SIW circular cavity-backed cross-shaped slot antenna for wireless applications |