Heidarinejad et al., 2010 - Google Patents
The effects of operational conditions of the desiccant wheel on the performance of desiccant cooling cyclesHeidarinejad et al., 2010
View PDF- Document ID
- 8257056520370649038
- Author
- Heidarinejad G
- Pasdarshahri H
- Publication year
- Publication venue
- Energy and Buildings
External Links
Snippet
A desiccant cooling model is developed and applied to the ventilation, recirculation, makeup, and mix modes of the operating system. The mathematical model is based on the transient coupled heat and mass transfer and is used to predict the performance of the …
- 239000002274 desiccant 0 title abstract description 99
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/50—Systems profiting of external/internal conditions
- Y02B30/56—Heat recovery units
- Y02B30/563—Air to air
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/50—Systems profiting of external/internal conditions
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/08—Energy efficient heating, ventilation or air conditioning [HVAC] relating to domestic heating, space heating or domestic hot water heating or supply systems [DHW]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
- F24F2203/1036—Details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat; combined with household units such as an oven or water heater
- F24F5/0089—Systems using radiation from walls or panels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/40—Geothermal heat-pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1068—Rotary wheel comprising one rotor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/14—Thermal storage
- Y02E60/142—Sensible heat storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/14—Thermal storage
- Y02E60/145—Latent heat storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chung et al. | Optimization of desiccant wheel speed and area ratio of regeneration to dehumidification as a function of regeneration temperature | |
Heidarinejad et al. | Potential of a desiccant-evaporative cooling system performance in a multi-climate country | |
Jani et al. | Solid desiccant air conditioning–A state of the art review | |
Heidarinejad et al. | The effects of operational conditions of the desiccant wheel on the performance of desiccant cooling cycles | |
Zhang et al. | A pre-cooling Munters environmental control desiccant cooling cycle in combination with chilled-ceiling panels | |
Jiang et al. | Experimental investigation and analysis of composite silica-gel coated fin-tube heat exchangers | |
Jiang et al. | Experimental investigation on a novel temperature and humidity independent control air conditioning system–Part I: Cooling condition | |
Elzahzby et al. | A mathematical model for predicting the performance of the solar energy assisted hybrid air conditioning system, with one-rotor six-stage rotary desiccant cooling system | |
Tu et al. | Performance analysis of a two-stage desiccant cooling system | |
Kabeel et al. | Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system | |
Ge et al. | Control strategies for a liquid desiccant air-conditioning system | |
Chung et al. | Contributions of system components and operating conditions to the performance of desiccant cooling systems | |
Gao et al. | Numerical study on performance of a desiccant cooling system with indirect evaporative cooler | |
Li et al. | Experimental investigation on a one-rotor two-stage desiccant cooling/heating system driven by solar air collectors | |
Sheng et al. | Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system | |
Ge et al. | Feasible study of a self-cooled solid desiccant cooling system based on desiccant coated heat exchanger | |
Elzahzby et al. | Effect of inter-cooling on the performance and economics of a solar energy assisted hybrid air conditioning system with six stages one-rotor desiccant wheel | |
Nie et al. | Theoretical modelling and experimental study of air thermal conditioning process of a heat pump assisted solid desiccant cooling system | |
Rafique et al. | Performance analysis of a desiccant evaporative cooling system under hot and humid conditions | |
La et al. | Use of regenerative evaporative cooling to improve the performance of a novel one-rotor two-stage solar desiccant dehumidification unit | |
Kim et al. | Retrofit of a liquid desiccant and evaporative cooling-assisted 100% outdoor air system for enhancing energy saving potential | |
Zhang et al. | Experimental investigation on solar powered desiccant coated heat exchanger humidification air conditioning system in winter | |
Kim et al. | Energy benefit of a dedicated outdoor air system over a desiccant-enhanced evaporative air conditioner | |
Hatami et al. | Optimization of solar collector surface in solar desiccant wheel cycle | |
La et al. | Study on a novel thermally driven air conditioning system with desiccant dehumidification and regenerative evaporative cooling |