Suresh et al., 2009 - Google Patents
An efficient green protocol for the production of 1, 8-dioxo-octahydroxanthenes in triethylammonium acetate (teaa) a recyclable inexpensive ionic liquidSuresh et al., 2009
View PDF- Document ID
- 794082091684157842
- Author
- Suresh D
- Jagir S
- Publication year
- Publication venue
- Rasayan J Chem
External Links
Snippet
In-depth study is reported for the condensation of 5, 5-dimethyl-1, 3-cyclohexanedione with a variety of aldehydes to obtain title compounds and it is established Knoevenagel followed by Michael occurs without the need of any external catalyst to give bis-5, 5-dimethyl-1, 3 …
- AVBGNFCMKJOFIN-UHFFFAOYSA-N Triethylammonium acetate   CC(O)=O.CCN(CC)CC 0 title description 21
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/44—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D317/46—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D317/48—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes unsubstituted on the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/10—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
- C07D317/14—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/45—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
- C07C45/46—Friedel-Crafts reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C201/00—Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
- C07C201/06—Preparation of nitro compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/04—1,3-Dioxanes; Hydrogenated 1,3-dioxanes
- C07D319/06—1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
- C07C45/68—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/49—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
- C07C205/50—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to acyclic carbon atoms of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/66—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D233/91—Nitro radicals
- C07D233/92—Nitro radicals attached in position 4 or 5
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghorbani-Vaghei et al. | One-pot synthesis of aliphatic and aromatic 2H-indazolo [2, 1-b] phthalazine-triones catalyzed by N-halosulfonamides under solvent-free conditions | |
Hajipour et al. | Brønsted acidic ionic liquid as an efficient and reusable catalyst for one-pot synthesis of 1-amidoalkyl 2-naphthols under solvent-free conditions | |
Zhou et al. | [Et3NH][HSO4] catalyzed efficient and green synthesis of 1, 8-dioxo-octahydroxanthenes | |
Siddiqui | Bis [(L) prolinato-N, O] Zn–water: A green catalytic system for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones via the Biginelli reaction | |
Naeimi et al. | Environmentally benign and one-pot synthesis of 14-aryl-14H-dibenzo [a, j] xanthenes catalyzed by acyclic Brønsted acidic ionic liquid [H-NMP][HSO 4] under green conditions | |
Sá et al. | Synthesis of allylic thiocyanates and novel 1, 3-thiazin-4-ones from 2-(bromomethyl) alkenoates and S-nucleophiles in aqueous medium | |
Wang et al. | One‐pot synthesis of tetrahydrobenzo [b] pyrans catalyzed by PEG‐1000 bridged primary amine functionalized dicationic ionic liquid in water | |
CN101654425B (en) | L-proline trifluoromethanesulfonic acid ammonium salt and application thereof | |
Shaterian et al. | Ferric hydrogen sulfate as an efficient heterogeneous catalyst for environmentally friendly greener synthesis of 1, 8-dioxo-octahydroxanthenes | |
Mohammadiannejad et al. | Synthesis of new mixed-bistriarylmethanes and novel 3, 4-dihydropyrimidin-2 (1 H) one derivatives | |
Suresh et al. | An efficient green protocol for the production of 1, 8-dioxo-octahydroxanthenes in triethylammonium acetate (teaa) a recyclable inexpensive ionic liquid | |
Prasad et al. | L-Proline-accelerated, eco-friendly synthesis of 9-substituted-2, 3, 4, 9-tetrahydro-1H-xanthen-1-ones under mild conditions | |
Garima et al. | Direct sulfonylation of Baylis-Hillman alcohols and diarylmethanols with TosMIC in ionic liquid-[Hmim] HSO4: an unexpected reaction | |
CN102911151B (en) | Method for water-phase synthesis of benzoxanthene derivatives | |
Barange et al. | A mild and convenient one-pot two-step synthesis of hydroxy-iminodihydrobenzofurans mediated by silica gel under microwave activation conditions | |
Shaterian et al. | Four-component synthesis of 2H-indazolo [2, 1-b] phthalazine-1, 6, 11 (13H)-trione derivatives | |
Khan et al. | Bromodimethylsulfonium Bromide Catalyzed Three‐Component Mannich‐Type Reactions | |
CN106083554B (en) | Method for preparing 2-acetyl cyclohexanone by one-pot method | |
Mahdavinia | Clean synthesis of 1, 8-dioxo-octahydroxanthene derivatives using NBS as an efficient and almost neutral catalyst in aqueous media | |
Davoodnia et al. | Neat synthesis of octahydroxanthene-1, 8-diones, catalyzed by silicotungstic acid as an efficient reusable inorganic catalyst | |
Shaikh et al. | Boric acid catalyzed one-pot synthesis of [1, 2, 4] triazolo quinazolinone Derivatives | |
Hunnur et al. | Silica sulfuric acid: A simple, efficient, and reusable heterogeneous catalyst for the one-pot synthesis of aryl-14H-dibenzo [a, j] xanthenes under conventional heating and solvent-free conditions | |
Turhan et al. | One-pot synthesis of indenonaphthopyrans catalyzed by copper (II) triflate: a comparative study of reflux and ultrasound methods | |
Lad et al. | Lithium tetrafluoroborate catalyzed highly efficient inter-and intramolecular aza-Michael addition with aromatic amines | |
Mogilaiah et al. | Claisen-Schmidt condensation under solvent-free conditions |