Zeoli et al., 2022 - Google Patents
Performance Evaluation of an Indirect Evaporative CoolerZeoli et al., 2022
View PDF- Document ID
- 7806441866449277772
- Author
- Zeoli A
- Lemort V
- Publication year
External Links
Snippet
Nowadays, buildings are responsible for 40% of energy consumption in the European Union, according to the International Energy Agency (IEA). To reach the European objective aiming for CO2 neutrality of buildings, the IEA has developed the Energy in Buildings and …
- 238000011156 evaluation 0 title description 2
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety systems or apparatus
- F24F11/0009—Electrical control or safety systems or apparatus
- F24F11/001—Control systems or circuits characterised by their inputs, e.g. using sensors
- F24F2011/0041—Pressure
- F24F2011/0042—Air pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety systems or apparatus
- F24F11/0009—Electrical control or safety systems or apparatus
- F24F11/001—Control systems or circuits characterised by their inputs, e.g. using sensors
- F24F11/0012—Air temperature
- F24F2011/0013—Air temperature of the outside air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety systems or apparatus
- F24F11/0009—Electrical control or safety systems or apparatus
- F24F11/0086—Control systems or circuits characterised by other control features, e.g. display or monitoring devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat; combined with household units such as an oven or water heater
- F24F5/0089—Systems using radiation from walls or panels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Rooms units, e.g. receiving primary air from a central station or with supply of heating or cooling agents from a central station, such as those applied to air-treatment systems included in F24F3/00 and F24F5/00
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/46—Component arrangements in separate outdoor units
- F24F1/48—Component arrangements in separate outdoor units characterized by air airflow, e.g. inlet or outlet airflow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety systems or apparatus
- F24F11/0001—Control or safety systems or apparatus for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat; combined with household units such as an oven or water heater
- F24F5/0046—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat; combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/50—Systems profiting of external/internal conditions
- Y02B30/56—Heat recovery units
- Y02B30/563—Air to air
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/08—Energy efficient heating, ventilation or air conditioning [HVAC] relating to domestic heating, space heating or domestic hot water heating or supply systems [DHW]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/50—Systems profiting of external/internal conditions
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Duan et al. | Dynamic simulation of a hybrid dew point evaporative cooler and vapour compression refrigerated system for a building using EnergyPlus | |
Aktacir et al. | A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions | |
Li et al. | Performance of a heat recovery ventilator coupled with an air-to-air heat pump for residential suites in Canadian cities | |
Jaber et al. | Evaporative cooling as an efficient system in Mediterranean region | |
Fan et al. | Integrative modelling and optimisation of a desiccant cooling system coupled with a photovoltaic thermal-solar air heater | |
Liang et al. | Energy-efficient air conditioning system using a three-fluid heat exchanger for simultaneous temperature and humidity control | |
Angrisani et al. | Improvements of an unconventional desiccant air conditioning system based on experimental investigations | |
Rasouli et al. | Energetic, economic and environmental analysis of a health-care facility HVAC system equipped with a run-around membrane energy exchanger | |
Sawan et al. | Use of condensate drain to pre-cool the inlet air to the condensers: A technique to improve the performance of split air-conditioning units | |
Fan et al. | Design optimization and energy performance evaluation of a dedicated outdoor air system with dual cooling sources | |
Liu et al. | Performance analysis of a temperature and humidity independent control system with high temperature chilled water cooling and condensing heat regenerating for office buildings | |
Rasouli et al. | Application of a Run-Around Membrane Energy Exchanger in an Office Building HVAC System. | |
Im et al. | Empirical validation of building energy modeling using flexible research platform | |
Henderson Jr et al. | Energy Efficiency and cost assessment of humidity control options for residential buildings | |
Zeoli et al. | Performance Evaluation of an Indirect Evaporative Cooler | |
Jiang et al. | Comparison study of a novel solid desiccant heat pump system with EnergyPlus | |
Alessio et al. | All-air system and radiant floor for heating and cooling in residential buildings: A simulation-based analysis | |
Papakostas et al. | Heat recovery in an air-conditioning system with air-to-air heat exchanger | |
Kim et al. | Integrated Heat Recovery System Design of a Variable Refrigerant Flow (VRF) Heat Recovery System with a Domestic Hot Water (DHW) System. | |
Katipamula et al. | Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report | |
Walker et al. | Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems | |
Zeoli et al. | Performance evaluation of a desiccant cooling system coupled with indirect evaporative cooling technologies under various climates | |
Ridwana | Energy and Cost Assessment of The Proposed Dual VAV System | |
Kowalski | Szała nski, P.; Cepi nski, W. Waste Heat Recovery by Air-to-Water Heat Pump from Exhausted Ventilating Air for Heating of Multi-Family Residential Buildings. Energies 2021, 14, 7985 | |
Lazzarini et al. | A new air handling unit system for residential buildings: experiment and simulation-based analysis |