Arnautova et al., 2006 - Google Patents
A new force field (ECEPP-05) for peptides, proteins, and organic moleculesArnautova et al., 2006
- Document ID
- 7756826388722634734
- Author
- Arnautova Y
- Jagielska A
- Scheraga H
- Publication year
- Publication venue
- The Journal of Physical Chemistry B
External Links
Snippet
Parametrization and testing of a new all-atom force field for organic molecules and peptides with fixed bond lengths and bond angles are described. The van der Waals parameters for both the organic molecules and the peptides were taken from J. Phys. Chem. B 2003, 107 …
- 108090000765 processed proteins & peptides 0 title abstract description 53
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/16—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for molecular structure, e.g. structure alignment, structural or functional relations, protein folding, domain topologies, drug targeting using structure data, involving two-dimensional or three-dimensional structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/706—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for drug design with the emphasis on a therapeutic agent, e.g. ligand-biological target interactions, pharmacophore generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/701—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for molecular modelling, e.g. calculation and theoretical details of quantum mechanics, molecular mechanics, molecular dynamics, Monte Carlo methods, conformational analysis or the like
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/707—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds using machine learning, data mining or chemometrics, e.g. pattern recognition, knowledge discovery, rule extraction, correlation, clustering or classification, chemical name to structure conversion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/18—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/708—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for data visualisation, e.g. molecular structure representations, graphics generation, display of maps or networks or other visual representations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/704—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for prediction of properties of compounds, e.g. calculating and selecting molecular descriptors, details related to the development of SAR/QSAR/QSPR models, ADME/Tox models or PK/PD models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/28—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/705—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for database search of chemical structures, e.g. full structure search, substructure search, similarity search, pharmacophore search, 3D structure search
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/12—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for modelling or simulation in systems biology, e.g. probabilistic or dynamic models, gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Arnautova et al. | A new force field (ECEPP-05) for peptides, proteins, and organic molecules | |
Qiu et al. | Development and benchmarking of open force field v1. 0.0—the parsley small-molecule force field | |
Boothroyd et al. | Development and benchmarking of open force field 2.0. 0: the Sage small molecule force field | |
Abel et al. | Advancing drug discovery through enhanced free energy calculations | |
Bhachoo et al. | Investigating protein–peptide interactions using the Schrödinger computational suite | |
Jiang et al. | Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L | |
Robertson et al. | Improved peptide and protein torsional energetics with the OPLS-AA force field | |
Wang et al. | Development of polarizable models for molecular mechanical calculations. 4. van der Waals parametrization | |
Hansen et al. | Practical aspects of free-energy calculations: a review | |
Khoury et al. | Forcefield_PTM: Ab initio charge and AMBER forcefield parameters for frequently occurring post-translational modifications | |
Nelson et al. | NAMD: a parallel, object-oriented molecular dynamics program | |
Wang et al. | Development of polarizable models for molecular mechanical calculations II: induced dipole models significantly improve accuracy of intermolecular interaction energies | |
Lopes et al. | Polarizable force field for peptides and proteins based on the classical drude oscillator | |
Tong et al. | Electrostatic polarization makes a substantial contribution to the free energy of avidin− biotin binding | |
Isegawa et al. | Electrostatically embedded molecular tailoring approach and validation for peptides | |
Abel et al. | Molecular dynamics simulations of a characteristic DPC micelle in water | |
Olsen et al. | Accuracy of protein embedding potentials: An analysis in terms of electrostatic potentials | |
Miller et al. | Reparametrization of protein force field nonbonded interactions guided by osmotic coefficient measurements from molecular dynamics simulations | |
Yin et al. | Toward improved force-field accuracy through sensitivity analysis of host-guest binding thermodynamics | |
Jiang et al. | Assessing the performance of popular quantum mechanics and molecular mechanics methods and revealing the sequence-dependent energetic features using 100 tetrapeptide models | |
Hagler | Quantum derivative fitting and biomolecular force fields: Functional form, coupling terms, charge flux, nonbond anharmonicity, and individual dihedral potentials | |
Gao et al. | Binding enthalpy calculations for a neutral host–guest pair yield widely divergent salt effects across water models | |
Ivanov et al. | Genetic algorithm optimization of point charges in force field development: challenges and insights | |
Jakobsen et al. | Systematic improvement of potential-derived atomic multipoles and redundancy of the electrostatic parameter space | |
Burley et al. | Enhancing side chain rotamer sampling using nonequilibrium candidate Monte Carlo |