Li et al., 2015 - Google Patents
A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO 2-inlaid LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a high-performance cathode material for lithium ion batteriesLi et al., 2015
View PDF- Document ID
- 7595243831165490735
- Author
- Li L
- Chen Z
- Zhang Q
- Xu M
- Zhou X
- Zhu H
- Zhang K
- Publication year
- Publication venue
- Journal of Materials Chemistry A
External Links
Snippet
We present a novel hydrolysis-hydrothermal approach to using lithium residues on the surface of LiNi0. 5Co0. 2Mn0. 3O2 as raw materials to synthesize ultrathin LiAlO2-inlaid LiNi0. 5Co0. 2Mn0. 3O2 cathode materials, for the first time. High-resolution transmission …
- 229910001416 lithium ion 0 title abstract description 28
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/32—Three-dimensional structures spinel-type (AB2O4)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO 2-inlaid LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a high-performance cathode material for lithium ion batteries | |
Su et al. | Improving the cycling stability of Ni-rich cathode materials by fabricating surface rock salt phase | |
Zhao et al. | Improving the Ni-rich LiNi0. 5Co0. 2Mn0. 3O2 cathode properties at high operating voltage by double coating layer of Al2O3 and AlPO4 | |
Chen et al. | Synthesis and electrochemical study of Zr-doped Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 as cathode material for Li-ion battery | |
Xu et al. | Mitigating capacity fade by constructing highly ordered mesoporous Al 2 O 3/polyacene double-shelled architecture in Li-rich cathode materials | |
Zhao et al. | Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries | |
Chen et al. | Facile synthesis of 3D few-layered MoS 2 coated TiO 2 nanosheet core–shell nanostructures for stable and high-performance lithium-ion batteries | |
Liu et al. | Enhancing electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2 by lithium-ion conductor surface modification | |
Wang et al. | Al2O3 coated concentration-gradient Li [Ni0. 73Co0. 12Mn0. 15] O2 cathode material by freeze drying for long-life lithium ion batteries | |
Sun et al. | Enhancing the stabilities and electrochemical performances of LiNi0. 5Co0. 2Mn0. 3O2 cathode material by simultaneous LiAlO2 coating and Al doping | |
Li et al. | Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0. 5Co0. 2Mn0. 3O2 material prepared by lithium residue-assisted method | |
Wang et al. | Enhanced electrochemical performance of Li-rich cathode Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 by surface modification with lithium ion conductor Li3PO4 | |
Hu et al. | Improving the electrochemistry performance of layer LiNi0. 5Mn0. 3Co0. 2O2 material at 4.5 V cutoff potential using lithium metaborate | |
Zhang et al. | The role of boracic polyanion substitution on structure and high voltage electrochemical performance of Ni-Rich cathode materials for lithium ion batteries | |
Zhang et al. | Amorphous Zr (OH) 4 coated LiNi0. 915Co0. 075Al0. 01O2 cathode material with enhanced electrochemical performance for lithium ion batteries | |
Huang et al. | Lithium-ion conductor LiAlO2 coated LiNi0. 8Mn0. 1Co0. 1O2 as cathode material for lithium-ion batteries | |
Deng et al. | Study of carbon surface-modified Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13] O 2 for high-capacity lithium ion battery cathode | |
Chaudhary et al. | Surface modification of cathode materials for energy storage devices: A review | |
Ren et al. | Enhancing the high-voltage performances of Ni-rich cathode materials by homogeneous La2O3 coating via a freeze-drying assisted method | |
Luo et al. | Enhanced electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material after surface modification with graphene oxide | |
Chen et al. | Controlled synthesis of spherical hierarchical LiNi1− x− yCoxAlyO2 (0< x, y< 0.2) via a novel cation exchange process as cathode materials for High-Performance Lithium Batteries | |
Zhao et al. | Slower capacity/voltage degradation of surface engineered LiNi0. 92Co0. 05Mn0. 03O2 cathode for lithium-ion batteries | |
Liu et al. | Facile and scalable fabrication of K+-doped Li1. 2Ni0. 2Co0. 08Mn0. 52O2 cathode with ultra high capacity and enhanced cycling stability for lithium ion batteries | |
Yang et al. | Graphene-encapsulated Li2MnTi3O8 nanoparticles as a high rate anode material for lithium-ion batteries | |
Meng et al. | Preparation and characterization of LiNi0. 8Co0. 15Al0. 05O2 with high cycling stability by using AlO2-as Al source |