Nothing Special   »   [go: up one dir, main page]

Li et al., 2015 - Google Patents

A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO 2-inlaid LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a high-performance cathode material for lithium ion batteries

Li et al., 2015

View PDF
Document ID
7595243831165490735
Author
Li L
Chen Z
Zhang Q
Xu M
Zhou X
Zhu H
Zhang K
Publication year
Publication venue
Journal of Materials Chemistry A

External Links

Snippet

We present a novel hydrolysis-hydrothermal approach to using lithium residues on the surface of LiNi0. 5Co0. 2Mn0. 3O2 as raw materials to synthesize ultrathin LiAlO2-inlaid LiNi0. 5Co0. 2Mn0. 3O2 cathode materials, for the first time. High-resolution transmission …
Continue reading at pubs.rsc.org (PDF) (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/13Ultracapacitors, supercapacitors, double-layer capacitors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes

Similar Documents

Publication Publication Date Title
Li et al. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO 2-inlaid LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a high-performance cathode material for lithium ion batteries
Su et al. Improving the cycling stability of Ni-rich cathode materials by fabricating surface rock salt phase
Zhao et al. Improving the Ni-rich LiNi0. 5Co0. 2Mn0. 3O2 cathode properties at high operating voltage by double coating layer of Al2O3 and AlPO4
Chen et al. Synthesis and electrochemical study of Zr-doped Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 as cathode material for Li-ion battery
Xu et al. Mitigating capacity fade by constructing highly ordered mesoporous Al 2 O 3/polyacene double-shelled architecture in Li-rich cathode materials
Zhao et al. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries
Chen et al. Facile synthesis of 3D few-layered MoS 2 coated TiO 2 nanosheet core–shell nanostructures for stable and high-performance lithium-ion batteries
Liu et al. Enhancing electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2 by lithium-ion conductor surface modification
Wang et al. Al2O3 coated concentration-gradient Li [Ni0. 73Co0. 12Mn0. 15] O2 cathode material by freeze drying for long-life lithium ion batteries
Sun et al. Enhancing the stabilities and electrochemical performances of LiNi0. 5Co0. 2Mn0. 3O2 cathode material by simultaneous LiAlO2 coating and Al doping
Li et al. Characterization and electrochemical performance of lithium-active titanium dioxide inlaid LiNi0. 5Co0. 2Mn0. 3O2 material prepared by lithium residue-assisted method
Wang et al. Enhanced electrochemical performance of Li-rich cathode Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 by surface modification with lithium ion conductor Li3PO4
Hu et al. Improving the electrochemistry performance of layer LiNi0. 5Mn0. 3Co0. 2O2 material at 4.5 V cutoff potential using lithium metaborate
Zhang et al. The role of boracic polyanion substitution on structure and high voltage electrochemical performance of Ni-Rich cathode materials for lithium ion batteries
Zhang et al. Amorphous Zr (OH) 4 coated LiNi0. 915Co0. 075Al0. 01O2 cathode material with enhanced electrochemical performance for lithium ion batteries
Huang et al. Lithium-ion conductor LiAlO2 coated LiNi0. 8Mn0. 1Co0. 1O2 as cathode material for lithium-ion batteries
Deng et al. Study of carbon surface-modified Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13] O 2 for high-capacity lithium ion battery cathode
Chaudhary et al. Surface modification of cathode materials for energy storage devices: A review
Ren et al. Enhancing the high-voltage performances of Ni-rich cathode materials by homogeneous La2O3 coating via a freeze-drying assisted method
Luo et al. Enhanced electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material after surface modification with graphene oxide
Chen et al. Controlled synthesis of spherical hierarchical LiNi1− x− yCoxAlyO2 (0< x, y< 0.2) via a novel cation exchange process as cathode materials for High-Performance Lithium Batteries
Zhao et al. Slower capacity/voltage degradation of surface engineered LiNi0. 92Co0. 05Mn0. 03O2 cathode for lithium-ion batteries
Liu et al. Facile and scalable fabrication of K+-doped Li1. 2Ni0. 2Co0. 08Mn0. 52O2 cathode with ultra high capacity and enhanced cycling stability for lithium ion batteries
Yang et al. Graphene-encapsulated Li2MnTi3O8 nanoparticles as a high rate anode material for lithium-ion batteries
Meng et al. Preparation and characterization of LiNi0. 8Co0. 15Al0. 05O2 with high cycling stability by using AlO2-as Al source