Yang et al., 2013 - Google Patents
High performance solid oxide electrolysis cells using Pr0. 8Sr1. 2 (Co, Fe) 0.8 Nb0. 2O4+ δ–Co–Fe alloy hydrogen electrodesYang et al., 2013
- Document ID
- 7369917228116184046
- Author
- Yang C
- Yang Z
- Jin C
- Liu M
- Chen F
- Publication year
- Publication venue
- international journal of hydrogen energy
External Links
Snippet
A novel ceramic hydrogen electrode material consisting of K 2 NiF 4-type structured Pr 0.8 Sr 1.2 (Co, Fe) 0.8 Nb 0.2 O 4+ δ (K-PSCFN) matrix with homogenously dispersed nano- sized Co–Fe alloy (CFA) has been demonstrated by annealing perovskite Pr 0.4 Sr 0.6 Co …
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen   [H][H] 0 title abstract description 87
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/1226—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | High performance solid oxide electrolysis cells using Pr0. 8Sr1. 2 (Co, Fe) 0.8 Nb0. 2O4+ δ–Co–Fe alloy hydrogen electrodes | |
Liu et al. | Perovskite Sr2Fe1. 5Mo0. 5O6− δ as electrode materials for symmetrical solid oxide electrolysis cells | |
Tian et al. | Preparation and properties of PrBa0. 5Sr0. 5Co1. 5Fe0. 5O5+ δ as novel oxygen electrode for reversible solid oxide electrochemical cell | |
Yang et al. | Performance evaluation of La0. 4Sr0. 6Co0. 2Fe0. 7Nb0. 1O3− δ as both anode and cathode material in solid oxide fuel cells | |
Sumi et al. | Performance of nickel–scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O–CH4 | |
Yang et al. | High temperature solid oxide electrolysis cell employing porous structured (La0. 75Sr0. 25) 0.95 MnO3 with enhanced oxygen electrode performance | |
Jin et al. | La0. 75Sr0. 25Cr0. 5Mn0. 5O3 as hydrogen electrode for solid oxide electrolysis cells | |
Cao et al. | Titanium-substituted lanthanum strontium ferrite as a novel electrode material for symmetrical solid oxide fuel cell | |
Zheng et al. | Comparison of performance and degradation of large-scale solid oxide electrolysis cells in stack with different composite air electrodes | |
Li et al. | Electrolysis of H2O and CO2 in an oxygen-ion conducting solid oxide electrolyzer with a La0. 2Sr0. 8TiO3+ δ composite cathode | |
Pan et al. | Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode | |
Tian et al. | Enhanced performance of symmetrical solid oxide fuel cells using a doped ceria buffer layer | |
Yamaura et al. | Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell | |
Fan et al. | Infiltration of La0· 6Sr0· 4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell | |
Li et al. | Composite cathode based on Ni-loaded La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ for direct steam electrolysis in an oxide-ion-conducting solid oxide electrolyzer | |
Xing et al. | Preparation and characterization of La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ-yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation | |
Yu et al. | All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes | |
Xu et al. | Fabrication and optimization of La0. 4Sr0. 6Co0. 2Fe0. 7Nb0. 1O3-δ electrode for symmetric solid oxide fuel cell with zirconia based electrolyte | |
Yang et al. | Improving stability and electrochemical performance of Ba0. 5Sr0. 5Co0. 2Fe0. 8O3-δ electrode for symmetrical solid oxide fuel cells by Mo doping | |
Zheng et al. | Investigation of 30-cell solid oxide electrolyzer stack modules for hydrogen production | |
Xu et al. | Co-synthesis of LSCFN-GDC electrode for symmetric solid oxide fuel cell running on propane | |
Tao et al. | Pr0. 5Ba0. 5Co0. 7Fe0. 25Nb0. 05O3-δ as air electrode for solid oxide steam electrolysis cells | |
Yu et al. | Performance of Ni-Fe bimetal based cathode for intermediate temperature solid oxide electrolysis cell | |
Lee et al. | Durable high-performance Sm0. 5Sr0. 5CoO3–Sm0. 2Ce0. 8O1. 9 core-shell type composite cathodes for low temperature solid oxide fuel cells | |
Tan et al. | Nano-structured LSM-YSZ refined with PdO/ZrO2 oxygen electrode for intermediate temperature reversible solid oxide cells |