Nothing Special   »   [go: up one dir, main page]

Islam et al., 2022 - Google Patents

Switched beam steering using shared aperture antenna array

Islam et al., 2022

Document ID
7368932887496105960
Author
Islam M
Khan M
Vital D
Chibane C
Hoque M
Bhardwaj S
Publication year
Publication venue
2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)

External Links

Snippet

In this work, we present a method to steer the antenna pattern beam in multiple frequency bands using shared aperture antenna arrays. L and K band frequencies are being used in satellite and surveillance radar systems. Multiple antennas and mechanical rotation is …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised active aerial units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot aerials
    • H01Q13/18Resonant slot aerials the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting aerial units or systems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q25/00Aerials or aerial systems providing at least two radiating patterns
    • H01Q25/02Aerials or aerial systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/242Circumferential scanning
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices

Similar Documents

Publication Publication Date Title
Hong et al. Multibeam antenna technologies for 5G wireless communications
Pal et al. A twelve-beam steering low-profile patch antenna with shorting vias for vehicular applications
Hao et al. K-/Ka-band shared-aperture phased array with wide bandwidth and wide beam coverage for LEO satellite communication
CN110391495A (en) Unit cell antenna for phased array
US10749258B1 (en) Antenna system and method for a digitally beam formed intersecting fan beam
Chen et al. Phased array metantennas for satellite communications
Kothapudi et al. Hybrid‐fed shared aperture antenna array for X/K‐band airborne synthetic aperture radar applications
Greco et al. A dual-band, dual-polarized array element for Ka band satcom on the move terminals
Falkner et al. Flat panel interlaced shared aperture antenna array for LEO Ka-band high throughput satellite communication applications
Kausar et al. Multi-beam high gain steerable transmitarray lens for satellite communication and 5G mm-Wave systems
Islam et al. Switched beam steering using shared aperture antenna array
Al-Saedi et al. Active phased-array antennas for Ka/K mobile satellite communications
Luo et al. Millimeter-wave smart antennas for advanced satellite communications
Jokanovic et al. Advanced antennas for next generation wireless access
Abumunshar et al. 18–40GHz low-profile phased array with integrated MEMS phase shifters
Luo et al. Low-cost smart antenna using active frequency selective surfaces
Sanad et al. A Multibeam Antenna for Multi-Orbit LEO Satellites and Terminals with a Very Simple Tracking Technique
Baggen et al. Phased array technology by IMST: A comprehensive overview
EP4220864A1 (en) Multi-frequency band common-aperture antenna and communication device
Jin et al. Four-beam Ka-band antenna with switchable polarization for satellite communication application
Luo et al. Smart antennas for satellite communications on the move
Palumbo Some examples of systems developments in Italy based on phased array technology
Ahn et al. A dual‐polarized cylindrical conformal array antenna suitable for unmanned aerial vehicles
Kumar et al. A spherical phased array antenna with unequal amplitude excitation for satellite application
Kakaraparty et al. A v-band phased-array antenna for millimeter-wave-based 3d beam steering applications