Gao et al., 2023 - Google Patents
Cold sintering of highly transparent calcium fluoride nanoceramic as a universal platform for high‐power LightingGao et al., 2023
- Document ID
- 7294963948890412688
- Author
- Gao J
- Xia Z
- Ding Q
- Liu Y
- Yan P
- Hu Y
- Wang L
- Luo W
- Fan Y
- Jiang W
- Publication year
- Publication venue
- Advanced Functional Materials
External Links
Snippet
A thermally robust all‐inorganic color converter is imperative to high‐power light‐emitting diode (LED) lighting. However, it remains challenging to find a universal inorganic matrix for encapsulating multicolor phosphors due to the hurdle of achieving a highly transparent …
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals comprising europium
- C09K11/7734—Aluminates; Silicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L33/00—Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ling et al. | Red-emitting YAG: Ce, Mn transparent ceramics for warm WLEDs application | |
Liu et al. | Composition and structure design of three-layered composite phosphors for high color rendering chip-on-board light-emitting diode devices | |
Zhang et al. | Pore-existing Lu3Al5O12: Ce ceramic phosphor: An efficient green color converter for laser light source | |
Zhang et al. | A high quantum efficiency CaAlSiN3: Eu2+ phosphor-in-glass with excellent optical performance for white light-emitting diodes and blue laser diodes | |
Gao et al. | Cold sintering of highly transparent calcium fluoride nanoceramic as a universal platform for high‐power Lighting | |
Zhou et al. | Three birds with one stone: K2SiF6: Mn4+ single crystal phosphors for high‐power and laser‐driven lighting | |
Zhu et al. | Transparent YAG: Ce ceramic with designed low light scattering for high-power blue LED and LD applications | |
Wang et al. | Thermally self-managing YAG: Ce–Al 2 O 3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration | |
Yang et al. | Designed glass frames full color in white light-emitting diodes and laser diodes lighting | |
Liu et al. | Al2O3-Ce: GdYAG composite ceramic phosphors for high-power white light-emitting-diode applications | |
Huang et al. | Patterned glass ceramic design for high-brightness high-color-quality laser-driven lightings | |
Liu et al. | Preparation and optical properties of MgAl2O4-Ce: GdYAG composite ceramic phosphors for white LEDs | |
Deng et al. | Thermally robust orange‐red‐emitting color converters for laser‐driven warm white light with high overall optical properties | |
TW200536927A (en) | Phosphor, process for producing the same, lighting fixture and image display unit | |
Huang et al. | Tunable chromaticity and high color rendering index of WLEDs with CaAlSiN3: Eu2+ and YAG: Ce3+ dual phosphor‐in‐silica‐glass | |
Joshi et al. | Transparent Mg–α/β-Sialon: Eu2+ ceramics as a yellow phosphor for pc-WLED | |
TW201144411A (en) | Phosphors | |
Zhang et al. | High color rendering index composite phosphor-in-glass for high-power white laser lighting | |
Xu et al. | Lu3Al5O12: Ce@ SiO2 phosphor-in-glass: its facile synthesis, reduced thermal/chemical degradation and application in high-power white LEDs | |
Cheng et al. | Composition and luminescence properties of highly robust green-emitting LuAG: Ce/Al 2 O 3 composite phosphor ceramics for high-power solid-state lighting. | |
Si et al. | A stable and efficient red‐emitting color converter based on K2SiF6: Mn4+ phosphor‐in‐glass film for next‐generation laser‐excited lighting and display | |
Peng et al. | Effective heat dissipation of QD-based WLEDs by stacking QD film on heat-conducting phosphor-sapphire composite | |
Sun et al. | Green emitting spinel/Ba2SiO4: Eu2+/spinel sandwich structure robust ceramic phosphor prepared by spark plasma sintering | |
Wu et al. | Cyan-green-emitting Ca 3 Sc 2 Si 3 O 12: Ce 3+ transparent ceramics: A promising color converter for high-brightness laser lighting. | |
Ling et al. | A single‐structured LuAG: Ce, Mn phosphor ceramics with high CRI for high‐power white LEDs |