Nothing Special   »   [go: up one dir, main page]

Mobarak et al., 2019 - Google Patents

Vehicle-directed smart charging strategies to mitigate the effect of long-range EV charging on distribution transformer aging

Mobarak et al., 2019

Document ID
7129032738280535056
Author
Mobarak M
Bauman J
Publication year
Publication venue
IEEE Transactions on Transportation Electrification

External Links

Snippet

The recent introduction of affordable long-range electric vehicles (EVs) has the potential to trigger more widespread adoption of EVs with higher charging needs. Increased EV charging can have a detrimental effect on the distribution grid, especially by causing …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/128Energy exchange control or determination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7005Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce green house gasses emissions common to all road transportation technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/10Systems characterised by the monitored, controlled or operated power network elements or equipment
    • Y04S10/12Systems characterised by the monitored, controlled or operated power network elements or equipment the elements or equipments being or involving energy generation units, including distributed generation [DER] or load-side generation
    • Y04S10/126Systems characterised by the monitored, controlled or operated power network elements or equipment the elements or equipments being or involving energy generation units, including distributed generation [DER] or load-side generation the energy generation units being or involving electricity based vehicles, i.e. power aggregation of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Systems supporting the management or operation of end-user stationary applications, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y04S20/20End-user application control systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Similar Documents

Publication Publication Date Title
Mobarak et al. Vehicle-directed smart charging strategies to mitigate the effect of long-range EV charging on distribution transformer aging
Zheng et al. A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid
Savari et al. Internet of Things based real-time electric vehicle load forecasting and charging station recommendation
Jian et al. Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid
Wang et al. Smart charging for electric vehicles: A survey from the algorithmic perspective
Wang et al. Aggregated electric vehicle load modeling in large-scale electric power systems
García-Villalobos et al. Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks
Grahn et al. PHEV utilization model considering type-of-trip and recharging flexibility
Liang et al. Optimizing the energy delivery via V2G systems based on stochastic inventory theory
Kumar et al. V2G capacity estimation using dynamic EV scheduling
Kang et al. Real-time scheduling techniques for electric vehicle charging in support of frequency regulation
Almutairi et al. Assessment and enhancement frameworks for system reliability performance using different PEV charging models
Nie et al. Multi-area self-adaptive pricing control in smart city with EV user participation
Mullen Plug-in hybrid electric vehicles as a source of distributed frequency regulation
Gao et al. Integrated configuration and optimization of electric vehicle aggregators for charging facilities in power networks with renewables
Rücker et al. Self-sufficiency and charger constraints of prosumer households with vehicle-to-home strategies
Saxena et al. Quantifying the flexibility for electric vehicles to offer demand response to reduce grid impacts without compromising individual driver mobility needs
Han et al. Resident Plug‐In Electric Vehicle Charging Modeling and Scheduling Mechanism in the Smart Grid
CN109672199B (en) Method for estimating peak clipping and valley filling capacity of electric vehicle based on energy balance
Becker et al. Cost reduction of school bus fleet electrification with optimized charging and distributed energy resources
Kwasinski et al. Signal processing in the electrification of vehicular transportation: techniques for electric and plug-in hybrid electric vehicles on the smart grid
Deng et al. Demand modeling of a dc fast charging station
Wu et al. Optimization methods for evaluating pev charging considering customer behavior
Jun et al. Workplace charge management with aggregated building loads
Coldwell et al. Impact of electric vehicles on GB electricity demand and associated benefits for system control