Nothing Special   »   [go: up one dir, main page]

Kaijalainen et al., 2013 - Google Patents

Effect of austenite grain structure on the strength and toughness of direct-quenched martensite

Kaijalainen et al., 2013

Document ID
7124971836422345107
Author
Kaijalainen A
Suikkanen P
Limnell T
Karjalainen L
Kömi J
Porter D
Publication year
Publication venue
Journal of Alloys and Compounds

External Links

Snippet

The effect of prior austenite grain structure on the microstructure and properties of two low alloyed hot-rolled and direct-quenched martensitic steels was investigated. Strength properties were determined using uniaxial tensile testing, while toughness properties were …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching, tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHER TREATMENTS
    • C21D1/00General methods or devices for heat treatments, e.g. annealing, hardening, quenching, tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering

Similar Documents

Publication Publication Date Title
Kaijalainen et al. Effect of austenite grain structure on the strength and toughness of direct-quenched martensite
Masoumi et al. Effect of crystallographic orientations on the hydrogen-induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical processing
Yang et al. Tensile deformation of low density duplex Fe–Mn–Al–C steel
Bakkaloğlu Effect of processing parameters on the microstructure and properties of an Nb microalloyed steel
Sarkar et al. Implications of microstructure, Taylor factor distribution and texture on tensile properties in a Ti-added Fe-Mn-Al-Si-C steel
Shukla et al. Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon microalloyed steel for pipeline application
Hu et al. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel
Zhao et al. Effect of annealing temperature on the microstructure and tensile properties of Fe–10Mn–10Al–0.7 C low-density steel
Hu et al. Structure–mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling
Wu et al. Toughness and ductility improvement of heavy EH47 plate with grain refinement through inter-pass cooling
Kaijalainen et al. Effect of austenite pancaking on the microstructure, texture, and bendability of an ultrahigh-strength strip steel
Masoumi et al. Study of texture and microstructure evaluation of steel API 5L X70 under various thermomechanical cycles
Güral et al. Heat treatment in two phase region and its effect on microstructure and mechanical strength after welding of a low carbon steel
Morales et al. Strengthening mechanisms in a pipeline microalloyed steel with a complex microstructure
Xie et al. Microstructure-property relationship in a low carbon Nb-B bearing ultra-high strength steel by direct-quenching and tempering
EP2963138B1 (en) Production method for thick steel plate
WO2013099318A1 (en) High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
Kaijalainen et al. Influence of subsurface microstructure on the bendability of ultrahigh-strength strip steel
Sung et al. Effects of finish rolling temperature on inverse fracture occurring during drop weight tear test of API X80 pipeline steels
Chen et al. Strength and toughness of Fe-1.2 Mn-0.3 Cr-1.4 Ni-0.4 Mo-C tempered steel plate in three cooling processes
Sasidhar et al. Effect of transformation texture on the impact toughness of hot-rolled Ti+ Nb microalloyed steel
Zong et al. Effect of crystallographic texture on the anisotropy of Charpy impact behavior in pipeline steel
Bakshi et al. Effect of microstructure and crystallographic texture on mechanical anisotropy of Ti-Nb microalloyed hot rolled 800 MPa HSLA steel
Bakshi et al. Effect of hot deformation and crystallographic texture on toughness anisotropy and fracture behavior of Nb+ V microalloyed API X70 steel
Song et al. Vanadium or copper alloyed duplex lightweight steelwith enhanced hydrogen embrittlement resistance at room temperature