Nothing Special   »   [go: up one dir, main page]

Liu et al., 2016 - Google Patents

Preparation and characterization of segmented stacking for thermoelectric power generation

Liu et al., 2016

Document ID
7015952152314210809
Author
Liu D
Peng W
Li Q
Gao H
Jin A
Publication year
Publication venue
Clean Technologies and Environmental Policy

External Links

Snippet

Based on the Seebeck effect, thermoelectric generators can convert thermal energy directly into electrical power, which can be applied in waste heat recovery and clean energy generation. In this work, segmented thermoelectric legs were prepared with high …
Continue reading at link.springer.com (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/28Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
    • H01L35/30Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/12Selection of the material for the legs of the junction
    • H01L35/14Selection of the material for the legs of the junction using inorganic compositions
    • H01L35/22Selection of the material for the legs of the junction using inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen or germanium or silicon, e.g. superconductors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/28Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
    • H01L35/32Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the structure or configuration of the cell or thermo-couple forming the device including details about, e.g., housing, insulation, geometry, module
    • H01L35/325Cascades of thermo-couples
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/12Selection of the material for the legs of the junction
    • H01L35/14Selection of the material for the legs of the junction using inorganic compositions
    • H01L35/18Selection of the material for the legs of the junction using inorganic compositions comprising arsenic or antimony or bismuth, e.g. AIIIBV compounds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/12Selection of the material for the legs of the junction
    • H01L35/14Selection of the material for the legs of the junction using inorganic compositions
    • H01L35/20Selection of the material for the legs of the junction using inorganic compositions comprising metals only
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/34Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/02Details
    • H01L35/04Structural details of the junction; Connection of leads
    • H01L35/08Structural details of the junction; Connection of leads non-detachable, e.g. cemented, sintered, soldered, e.g. thin films
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/02Details
    • H01L35/04Structural details of the junction; Connection of leads
    • H01L35/10Connections of leads
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L39/00Devices using superconductivity; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L37/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using Nernst-Ettinghausen effect; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof

Similar Documents

Publication Publication Date Title
Fabián-Mijangos et al. Enhanced performance thermoelectric module having asymmetrical legs
Chen et al. Review of development status of Bi2Te3‐based semiconductor thermoelectric power generation
Adams et al. Active peltier coolers based on correlated and magnon-drag metals
Kim et al. Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys
Nemoto et al. Development of an Mg 2 Si unileg thermoelectric module using durable Sb-doped Mg 2 Si legs
Kanimba et al. Modeling of a thermoelectric generator device
Hodes Optimal pellet geometries for thermoelectric power generation
Hung et al. Segmented thermoelectric oxide‐based module for high‐temperature waste heat harvesting
CN101587934A (en) Diaphragm type thermoelectric converting component and manufacturing method thereof
Liu et al. Preparation and characterization of segmented stacking for thermoelectric power generation
Mouko et al. Manufacturing and performances of silicide-based thermoelectric modules
Mikami et al. Evaluation of the thermoelectric module consisting of W-doped Heusler Fe 2 VAl alloy
Zhu et al. Fabrication and performance prediction of Ni/Bi0. 5Sb1. 5Te3 artificially-tilted multilayer devices with transverse thermoelectric effect
Song et al. Effect of inevitable heat leap on the conversion efficiency of thermoelectric generators
Wieder et al. High-performance tellurium-free thermoelectric module for moderate temperatures using α-MgAgSb/Mg2 (Si, Sn)
Ouerdane et al. Enhanced thermoelectric coupling near electronic phase transition: The role of fluctuation Cooper pairs
Sallehin et al. A review on fabrication methods for segmented thermoelectric structure
Thiébaut et al. Maximization of the thermoelectric cooling of a graded Peltier device by analytical heat-equation resolution
Harman et al. High electrical power density from PbTe-based quantum-dot superlattice unicouple thermoelectric devices
Tian et al. Optimizing the output performance and parasitic depletion of Bi 2 Te 3-based thermoelectric generators by using a high-density approach
Bhatt et al. Bismuth telluride based efficient thermoelectric power generator with electrically conducive interfaces for harvesting low-temperature heat
Lee Thermoelectric Generators
Shtern et al. Multisectional thermoelement for generators working at the temperatures up to 1200 K
Mikami et al. Power generation performance of thermoelectric module consisting of Sb-doped Heusler Fe2VAl sintered alloy
Patil et al. Numerical study on geometric parameter effects of power generation performances for segmented thermoelectric generator